

Optical, Spectroscopic, and Infrared Remote Imaging System

Osiris Experiment Data Record and Software Interface Specification (EDR/SIS)

RO-RIS-MPA E-ID-018 Issue: 3 Revision: k 4/4-2011

> Prepared by: Stubbe F. Hviid

Document Change Record

Iss./Rev.	Date	Pages affected	Description
1a	12/12-2004	all	First draft
1b	28/2-2005	page 11	Added PRODUCT_VERSION_ID to label description
2a	1/11-2006	all	Major rewrite of introductory sections Geometry related PDS labels modified Added PDS group describing the calibration pipeline header additions
2b	3/5-2007		Add definition of PROCESSING_ID Changed the definition of FILTER_NUMBER and COMM ANDED_FILTER_NUMBER Changed the definition of FILTER_NAME and COMM ANDED_FILTER_NAME Changed the description of the X_START, X_END, Y_START, Y_END labels
3a	13/5-2009	all	Added description of new PA_IMAGE/OL_IMAGE/PB_IMAGE/QUALITY _MAP_IMAGE and SIGMA_MAP_IMAGE objects Deleted the PROCESSING ID group
3b	3/12-2009	59	Renamed CRB_TO_PCM_SYNCHRONIZATION_MODE To CRB_TO_PCM_SYNC_MODE (keyword was to long!)
3c	19/4-2010	43-44	Added LINE_DISPLA Y_DIRECTION and SAMPLE_DISPLA Y_DIRECTION Removed the CAMERA_MODEL group
3d	11/5-2010	91	Added better description of the quality map
3e	22/6-2010	38	Added new Non PDS label SSMM_TIME
3f	8/11-2010	38,41	Added better description of the START_TIME label Added LIGHT_SOURCE_PHASE_ANGLE to geometry labels
3g	9/11-2010	46	Deleted the data content group Added SPICE_FILE_NAME label description Added TARGET_LIST label
3h	2/12-2010		Updated the example PDS label Removed TARGET_LIST label again (PVV problems)
3i	28/1-2011		Marked LOST packets as Non PDS
3ј	8/3-2011		Cleaned up definition of ENCODING
3k	4/4-2011		Removed SHUTTER_FIT values

Content

1	Acronyms	5
2	General aspects	6
	2.1 Scope	6
	2.2 Introduction	6
3	Instrument Overview	6
	3.1 The narrow angle camera (NAC)	7
	3.2 The wide angle camera (WAC)	9
	3.3 The Mechanical Shutter Mechanism	11
	3.4 The OSIRIS CCD	12
4	Data Processing Overview	14
5	Data Storage	15
	5.1 Onboard image processing and compression	17
6	File Naming Convention	19
	6.1 The OSIRIS archive filename convention	19
	6.2 The PDS archive filename convention	20
7	Coordinate Systems	21
	7.1 CCD coordinate frames	21
	7.1.1 NAC_AMPLIFIER_A_ELECTRICAL	21
	7.1.2 NAC_AMPLIFIER_B_ELECTRICAL	21
	7.1.3 NAC_AMPLIFIER_BOTH_ELECTRICAL	21
	7.1.4 NAC_CCD_REFERENCE	21
	7.1.5 WAC_AMPLIFIER_A_ELECTRICAL	22
	7.1.6 WAC_AMPLIFIER_B_ELECTRICAL	22
	7.1.7 WAC_AMPLIFIER_BOTH_ELECTRICAL	22
	7.1.8 WAC_CCD_REFERENCE	22
	7.2 Inertial Coordinate Frames	23
	7.2.1 Earth mean equator and equinox of J2000 (EME J2000)	23
	7.2.2 The Rosetta spacecraft coordinate frame:	23
	7.2.3 Camera Frames:	24
0	7.3 Displaying the OSIRIS images	24
8	The OSIRIS EDR and RDR PDS Labels	25
	8.1 System Labels	25
	8.2 Mission Identification	27
	8.3 Instrument and image Identification	28
	8.4 Sequence identification Group	35
	8.5 Time Identification	
	8.6 Observation geometry	41
	8.7 Display geometry	46
	8.8 Status Flags Group	48
	8.9 Mechanism Status Group	49
	8.10 Image Acquisition Options Group	
	8.12 Mechanical Shutter Status Group	01 64
	8.12 Image Compression Group	04 65
	8.13 Intage Complexition Group	05
	8.15 Operation Heater Group	60
	8.16 Dower Switch Group	71
	8.10 Fower Switch Oloup	76
	8.17 Currents and voltages Gloup	79
	8 19 Radiation Environment Group	
9	PDS Objects	
,	9.1 The HISTORY Object	83
	9.2 Shutter Blade 1 position encoder Object	
	9.3 Shutter Blade 2 position encoder Object	
	9.4 The IMA GE Object	
	9.5 The PA IMAGE Object	
	9.6 The PB IMAGE Object	
	9.7 The OL IMAGE Object	
	9.8 The SIGMA MAP IMAGE Object	
		···· / 🖵

9.9	The QUALITY MAP IMAGE Object	
Appendix	1 – Example OSIRIS Label	
Appendix	2 – Example OSIRIS History Label	

1 Acronyms

ASCII	American Standard Code for Information Interchange
ADC	Analog Digital Converter
CRB	CCD Readout Board
CCD	Charge Coupled Device
DDS	Data Distribution System
DPU	Data Processing Unit
DSP	Digital Signal Processor
EDR	Experiment Data Record
ESA	European Space Agency
НК	House Keeping data
IAA	Instituto de Astrofísica de Andalucía
IDA	Institut fuer Datentechnik und Kommunikationsnetze
INTA	Instituto Nacional de Técnica Aeroespacial
LAM	Laboratoire d'Astrophysique de Marseille
MCB	Motor Controller Board
MLI	Multi Layer Insulation
MPS	Max Planck Institut für Sonnensystemforschung
NAC	Narrow Angle Camera
ODL	Object Description Language
OIOR	Orbiter Instrument Operational Request
OSIRIS	Optical, Spectroscopic, and Infrared Remote Imaging System
PCM	Power Converter Module
PDS	Planetary Data Systems
RDR	Reduced Data Record
RSSD	Research and Scientific Support Department (ESA)
RO	Rosetta Orbiter
PSA	Planetary Science Archive
SPICE	Spacecraft, Planet, Instrument, C-matrix, Event kernels
SIS	Software Interface Specification
SPIHT	Set Partitioning in Hierarchical Trees
	(Wavelet compression algorith m)
SSMM	Solid State Mass Memory (Rosetta spacecraft storage device)
TBC	To Be Considered
TBD	To Be Determined
TMI	TeleMetry Image
UPD	University of Pardua
UPM	Universidad Politécnica de Madrid
WAC	Wide Angle Camera

2 General aspects

2.1 Scope

This document describes in detail the OSIRIS data product PDS data label.

2.2 Introduction

The purpose of this Data Product Software Interface Specification (SIS) is to provide consumers of OSIRIS Camera Experiment Data Record (EDR) and Reduced Data Record (RDR) data products with a detailed description of the products and how they are generated, including data sources and destinations. The SIS is intended for the planetary science scientific community who will analyze the data.

3 Instrument Overview

The OSIRIS instrument was provided by the OSIRIS consortium led by the principal investigator Dr. Horst Uwe Keller at the Max Planck Institut für Sonnensystemforschung.

The OSIRIS consortium has the following members:

MPS	Overall responsibility and project management, system engineering, interfaces, Focal Plane Assemblies, CCDs and Readout Boards, HK Boards, integration &qualification of E-Boxes, harnesses, system integration, high level software, NAC & WAC system calibration, QA, mission operations						
LAM	NAC telescope, camera integration and qualification WAC optical bench, camera						
UPD	Integration and qualification, shutter mechanisms and shutter electronics, Front Door Mechanisms (mechanisms for NAC and WAC)						
IAA	Mechanism Controller Board						
INTA	Filter Wheel Mechanisms, E-Box Power Converter Module, NAC & WAC CRB Power Converter Modules						
RSSD	Data Processing Unit						
IDA	Mass memory, low level software and data compression						
DASP	NAC & WAC Filters						
UPM	Thermal and structural analysis, NAC MLI, WAC FPA MLI						

The OSIRIS camera system consists of a narrow angle camera (NAC) and a wide angle camera (WAC).

3.1 The narrow angle camera (NAC)

The NAC uses an off axis three mirror optical design. The off axis design was selected in order to minimize the strayligh reaching the CCD (The NAC has a proven stray light attenuation of better than 1.0e-9). The optical beam is reflected of the three mirrors (M1, M2 and M3) before passing through a double filter wheel, a mechanical shutter mechanism and an anti radiation plate (ARP) before reaching the CCD.

Figure 1 (right) The OSIRIS NAC flight unit in the lab. (left) The NAC Optical path

Optical design	3-mirror off-axis
Angular resolution	18.6 μ rad px ⁻¹
Focal length	717.4 mm
Mass	13.2 kg
Field of view	2.20 x 2.22°
F-nu mber	8
Spatial scale from 100 km	1.86 m p x ⁻¹
Typical filter bandpass	40 n m
Wavelength range	250n m - 1000n m
Number of filters	12
Estimated detection threshold	18 mV

Table 1 Basic NAC parameters

The double filter wheels allow the NAC to place a refocusing plate together with an optical filter in the optical beam. The NAC is equipped with two types of refocusing plates allowing optimum focus at 4km and 1.2km respectively.

The NAC is equipped with the following optical filters:

Figure 2 The OSIRIS dual filter wheel mechanism

Name	Wawelength [nm]	Bandwidth [nm]	Peak [%]	Objective	Thickness centre [nm]	Wheel	Position	Encoder [DN]
FFP-UV	600	> 600	> 99	BBAR coated	4.41	1	1	14
FFP-IR	600	> 600	>99	use of wheel 2 BBAR coated plate to allow	5.15	2	1	14
Neutral	640	520	5.0	Neutral density filter	4.64	1	8	11
NFP-Vis	600	> 600	> 98	Refocusing lens for near-nucleus imaging, BBAR coated	4.18	1	3	4
Far-UV	269.3	53.6	37.8	Surface spectral	4.50	2	5	2
Near-UV	360.0	51.1	78.2	Surface spectral reflectance	4.68	2	6	7
Blue	480.7	74.9	74.6	Surface spectral	4.67	2	4	1
Green	535.7	62.4	75.8	Surface spectral	4.64	2	3	8
FFP-Vis	600	600	>90	Refocusing lens for near-nucleus	5.00	1	2	13
Orange	649.2	84.5	92.4	imaging, BBAR coated HMC orange filter; surface spectral reflectance	4.73	2	2	11
Hydra	701.2	22.1	87.4	Water of hydration band	4.72	2	7	4
Red	743.7	64.1	96.0	Surface spectral reflectance	4.68	2	8	13
Ortho	805.3	40.5	69.8	Orthopyroxene	4.69	1	5	2
Near-IR	882.1	65.9	78.4	Surface spectral reflectance	4.75	1	4	7
Fe2O3	931.9	34.9	81.6	Iron-bearing minerals	4.73	1	6	1
IR	989.3	38.2	78.1	IR Surface reflectance	4.74	1	7	8

Table 2 NAC Optical Filter

3.2 The wide angle camera (WAC)

The WAC uses an off axis two mirror optical design. The off axis design was selected in order to minimize the stray light reaching the CCD (The NAC has a proven stray light attenuation of better than 1.0e-8).

The optical beam is reflected of the two mirrors (M1 & M2)before passing through a double filter wheel, a mechanical shutter mechanism, an anti radiation plate (ARP) before reaching the CCD.

Figure 3 (left) The OSIRIS WAC flight unit in the lab. (right) The WAC Optical path

Optical design	2-mirror off-axis
Angular resolution	101 µrad px-1
Focal length	140(sag)/131(tan)
Mass	9.48 kg
Field of view	11.34 x 12.11°
F-number	5.6
Spatial scale from 100 km	10.1 mpx-1
Typical filter bandpass	5 nm
Wavelength range	240n m - 720n m
Number of filters	14
Estimated detection threshold	13 mV

Table 3 Basic WAC parameters

The WAC camera does not have refocusing plates so the two WAC filter wheels each have a filter position with no filter mounted. So the typical WAC observation uses either the filter combination (empty + filter) or (filter + empty)

The WAC is	equipped	with the	follo wing	optical	filters:
------------	----------	----------	------------	---------	----------

Name	Wavelength	Bandwidth	Peak	Objective	Thickness	Wheel	Position	Encoder
	[nm]	[nm]	[%]		centre [nm]			[DN]
Empty				Empty position		1	1	14
				to allow				
				the use of				
				filter wheel 2				
Empty				Empty position		2	1	14
				to allow				
				the use of				
				filter wheel 1				
UV245	246.2	14.1	31.8	Continuum	4.51	1	3	4
				surface spectral				
				reflectance				
CS	259.0	5.6	29.8	CS gas emission	4.60	1	4	7
UV295	295.9	10.9	30.4	Continuum for OH	4.75	1	5	2
OH-WAC	309.7	4.1	26.0	OH emission from	4.82	1	6	1
				the vicinity of				
				the nucleus				
UV325	325.8	10.7	31.6	Continuum for OH	4.85	1	7	8
				surface spectral				
				reflectance			_	
NH	335.9	4.1	23.6	NH gas emission	4.86	1	8	11
UV375	375.6	9.8	57.3	Continuum for CN	4.60	2	3	8
				surface spectral				
				reflectance		_		
CN	388.4	5.2	37.4	CN gas emission	4.61	2	4	1
Green	537.2	63.2	76.8	Dust continuum	4.71	1	2	13
NH2	572.1	11.5	60.9	NH2 gas emission	4.74	2	5	2
Na	590.7	4.7	59.0	Sodium gas	4.75	2	6	7
100010	(10.)	0.0	02.4	emission	1.65	2	0	10
VIS610	612.6	9.8	83.4	Continuum for OI	4.65	2	8	13
				surface spectral				
01	60.1 <i>c</i>	1.0	·	reflectance	1.55		-	
OI	631.6	4.0	52.4	O (ID) gas	4.66	2	1	4
				emission				
				for dissociation				
D	(20.0	1560	057	of H2O	1.67		2	1.1
ĸ	629.8	156.8	95.7	Broadband filter	4.67	2	2	11
				for nucleus and				
				asteroid				
				(NAC radum day rat)				
				(INAC redundancy)				
1		1	1		1	1	1	1

Table 4 The WAC Optical Filters

3.3 The Mechanical Shutter Mechanism

Both the NAC and the WAC cameras are equipped with a mechanical shutter mechanism for controlling the exposure time. The shutter mechanism uses two blades to control the exposure. The first blade covers the CCD at the start of the exposure, when the exposure is started the first blade is accelerated to 1.3 m/s before the edge of the blade reaches the edge of the CCD, the blade edge then passes over the CCD at constant velocity before being decelerated to standstill after passing the far edge of the CCD. The end of the exposure is controlled by performing the same motion with a second blade that initially is outside the CCD surface.

The second blade motion starts after the exposure time has passed from the start of the first blade motion.

The full blade travel lasts 53ms. For exposure times shorter than 53 ms the blade motion of the two blades overlaps. In this case the exposure is controlled by a moving slit (same principle as a SLR camera).

During the blade motions the position is measured using a position encoder mounted on the drive shaft of the shutter motors.

The minimum allowed exposure time is 10 ms and accuracy of the exposure is better than 5µs

3.4 The OSIRIS CCD

The OSIRIS camera system uses 2048x2048 pixel backside illuminated CCD's. The CCD's are equipped with anti reflection coatings optimized for the UV spectral range. The CCD's are equipped with shielded anti-blooming control. The CCD's are UV sensitive down to 240nm (50% QE) and IR sensitive up to 1000nm (6% QE). The system gain is set to ~3e- in normal operational mode. The readout electronics is using a dual 14 bit ADC configuration giving an effective 16 bit system. The CCD's uses two readout channels (channel A and B) which can be used in parallel for fast readout.

Figure 5 The OSIRIS CCD mounted in the focal plane assembly.

The CCD's can be read out using hardware windowing and hardware binning (1x1, 2x2, 4x4 and 8x8). The fastest readout of a 1x1 binned fullframe image is 3.4s. By using windowing and binning modes this time can be reduced to less than 1s.

Figure 6 The OSIRIS CCD layout

OSIRIS CCD specification:

Item	Specification
Source detector type	E2V CCD42-40, non-MPP, backside illuminated,
	Hafnium oxide AR coated
Array size	Full frame, 2048 x 2048 pixels
Serial register size	50 + 2k + 50; 50 extra pixel at both ends
	48 + 2k + 48 transmitted
Pixel size	13.5 um x 13.5 um
No. of outputs	2; either 1 sufficient
Overexposure	Shielded anti-blooming control
Operation modes	Clock dithering for dark
	current reduction for
	operations at > 220 K
	(optional), windowing, binning
Full well	> 100 000 e- px-1
System gain	~ 3 e- / DU
Readout noise (CCD)	< 7 e- rms
Dark charge generation	~0.6 e- s-1 px-1 @ 180 K
	~200 e- s-1 px-1 @ 293 K - (with dithering)
QE	250 n m: 50 %, 400 n m: 60 %,
	600 n m: 80 %,
	800 n m: 60 %, 1000 n m: 6 %
Readout rate	1.3 Mpx s-1; 650 kpx s-1 per channel
Readout time (full frame)	3.4 s (2 channels)
Vertical clock rate	25 us per line
Operating temperature	160 K < T < 300 K

Table 5 The OSIRIS CCD parameters

4 Data Processing Overview

The OSIRIS EDR processing begins with the reconstruction of packetized telemetry data resident on the ESA DDS system by the IDA GSEOS (Gound Support Operating System) software system. The GSEOS system saves the image data as OSIRIS level 0 image files (TMI or PDS format depending on flight software version).

The OSIRIS level 0 images are then processed by a software application called tmi2pds used to calibrate the header information and to append various meta data like spacecraft position and orientation. The output is stored as OSIRIS level 1 (CODMAC level 2) PDS compliant image files (EDR's).

The EDR's are then processed by an IDL coded image processing pipeline used to generate OSIRIS level 2 (CODMAC level 3) files (RDR's).

The full data flow is illustrated in Figure 7 and the processing levels are defined in Table 6.

Figure 7 The OSIRIS data and processing flow (Please note that the data level referred to in the diagram is OSIRIS data levels = CODMAC data level -1.

OSIRIS	CODMAC	Description
Data Levels	levels	
Packet Data	1	Telemetry data stream as received at the ground station, with science and engineering data embedded.
0		PDS or TMI formatted data files. Uncalibrated header
1	2	PDS compliant data files with calibrated header data and uncalibrated image data
2	3	PDS compliant data files with calibrated header data and calibrated image data
3	4	PDS compliant data files with calibrated header data and calibrated image data optical distortion removed
4	5	PDS compliant data files with calibrated header data and calibrated image data optical distortion removed and image rotated to align image y-axis with galactic north.

Table 6 OSIRIS and CODMAC data levels

5 Data Storage

The OSIRIS images are stored as binary files with embedded PDS label. The file structure is as follows:

Figure 8 Layout of an OSIRIS data file

- a. The image header is an embedded PDS label with associated ancillary information. The header contains object and pointer references to all other embedded objects.
- b. The history object is an additional PDS label containing a PDS HISTORY object. The history object contains the processing information of all the processing software used in the telemetry pipeline.

- c. The Image data contains the actual CCD image data from the exposure. The image data can be addressed using the primary IMAGE object.
- d. The amplifier A pre pixel image data contains the image data from the pre pixel readout phase of the amplifier A chain of the CCD readout. The pre pixels are 48 elements in the serial register coupled to ground instead of the physical CCD. These pre pixels can be used to estimate the CCD bias level and readout noise level. The image data is mapped to the PA_IMAGE object. The image object only exists if the pre pixel data was transmitted to ground.
- e. The amplifier B pre pixel image data contains the image data from the pre pixel readout phase of the amplifier B chain of the CCD readout. The pre pixels are 48 elements in the serial register coupled to ground instead of the physical CCD. These pre pixels can be used to estimate the CCD bias level and readout noise level. The image data is mapped to the PB_IMAGE object. The image object only exists if the pre pixel data was transmitted to ground.
- f. The overclocking lines image contains image data acquired by continuing clocking out the CCD after all the physical pixels have been read. Reading out the CCD in this manner allows a measurement of the charge transfer efficiency along the column clocking direction. The over clocking lines data is mapped to the OL_IMAGE object. The image object only exists if over clocked line data was acquired during the image acquisition.
- g. The Blade 1 shutter pulse object contains the raw timer data from the shutter mechanism motion encoder of the first shutter blade. This pulse data can be used to determine the position vs. time of the shutter blade during the exposure. His data can be used to improve the knowledge of the precise exposure time for each pixel in the image. The blade 1 shutter pulse data is stored in the BLADE1_PULSE_ARRAY array object. The object only exists if the shutter mechanism was used during the exposure and if the pulse data was down linked to ground.
- h. The Blade 2 shutter pulse object contains the raw timer data from the shutter mechanism motion encoder of the second shutter blade. This pulse data can be used to determine the position vs. time of the shutter blade during the exposure. His data can be used to improve the knowledge of the precise exposure time for each pixel in the image. The blade 1 shutter pulse data is stored in the BLADE2_PULSE_ARRAY array object. The object only exists if the shutter mechanism was used during the exposure and if the pulse data was down linked to ground.
- i. The error estimate image object is an image object with the same dimension as the primary image object. The image object contains the estimated standard deviation in % for each pixel based on the Poisson statistics of the exposure. The error estimate image is mapped to the SIGMA_MAP_IMAGE object. The object only exists in level 3 and higher data records.
- j. The per pixels quality map image is a byte image with the same dimensions as the primary image object. The quality image contains a bit field giving a data quality estimate for each pixel in the image. General rule is the lower the value the better. 0 is quality data 255 is very bad quality data. Please note that the quality map only contains an estimate based on the CCD characteristics and the processing chain the image has passed through. A complete quality estimate should include a combination of the quality map and the sigma map. The per pixel quality map image is mapped to the QUALITY_MAP_IMAGE object. The object only exists in level 3 and higher data records.

The image data is stored using a PDS IMAGE object. The two Blade 1&2 shutter pulse array objects are optional and will only be generated if the relevant data has been transferred from the spacecraft.

Pixel with value 0 is used to indicate lost data (lost packets).

4.2.1 PDS Label

The OSIRIS EDRs and RDRs have an attached PDS label. A PDS label is object-oriented and describes the objects in the data file. The PDS label contains

keywords for product identification. The label also contains descriptive information needed to interpret or process the data in the file.

PDS labels are written in Object Description Language (ODL) (see PDS v3.6 specification). PDS label statements have the form of "keyword = value". Each label statement is terminated with a carriage return character (ASCII 13) and a line feed character (ASCII 10) sequence to allow the label to be read by many operating systems.

Pointer statements with the following format are used to indicate the location of data objects in the file:

 $^{object} = location$

where the carat character (^, also called a pointer) is followed by the name of the specific data object.

The location is the 1-based starting record number for the data object within the file.

4.2.1.1 PDS Image Object

An IMAGE object is a two-dimensional array of values, all of the same type, each of which is referred to as a *sample*. IMAGE objects are normally processed with special display tools to produce a visual representation of the samples by assigning brightness levels or display colors to the values. An IMAGE consists of a series of lines, each containing the same number of samples.

The required IMAGE keywords define the parameters for simple IMAGE objects:

- LINES is the number of lines in the image.
- LINE_SAMPLES is the number of samples in each line.
- SAMPLE_BITS is the number of bits in each individual sample.
- SAMPLE_TYPE defines the sample data type.

5.1 Onboard image processing and compression

The OSIRIS flight software has to capability to compress the image data before transmission to ground using a number of compression algorithms and filtering schemes.

OSIRIS implements a data segmentation scheme to decrease sensitivity to data loss during transmission. Each image is separated into segments with a maximum size of 512x512 pixels. Each of these blocks are processed and compressed individually.

Figure 9 Example of the segmentation scheme used for an OSIRIS full frame image (2048x2048) (16 segments)

All information about compression and post processing is found in the SR_COMPRESSION group in the OSIRIS image headers. Each member of this group is a vector containing an entry for each image segment used to generate the final image. The segmentation boundaries can be found using the SEGMENT_[X,Y,W,H] members. The encoding algorithm can be found in the ENCODING member. The following encoding algorithms are supported:

NONE	- No Compression
SPIHT_D24	- SPIHT based compression used by the OSIRIS flight software prior to release 2.0
SPIHT_LIFT	- SPIHT compression with LIFT filtering
SPIHT_TAP	- SPIHT compression with TAP filtering
SQRT_16to8	- Square rooting followed by 16 to 8 bit reduction
PACK9BIT	- The image data has been compressed by chopping the data range at 9 bits
	(meaning discarding the upper 7 bits)

The effective compression ratio achieved by the encoder is stored in the COMPRESSION_RATIO member.

If the encoding step was performed without information loss then the LOSSLESS_FLAG member is TRUE else FALSE. Please note that LOSSLESS_FLAG only refers to the encoding step. LOSSLESS_FLAG can be TRUE even is a lossy filtering step has been performed.

OSIRIS can also perform a pixel averaging step. The pixel averaging box size can be found in the PIXEL_A VERAGING_WIDTH and PIXEL_A VERAGING_HEIGHT members.

To increase the quality of the SPIHT compressor OSIRIS also implements a number of pre processing filtering steps. The following filtering are possible:

- 1. A Gauss 5x5 convolution smooth filter
- 2. A Sqrt filtering step performing the transformation $I_Out = sqrt(I * gain)$

The type of gauss smooth filter used can be found in SMOOTH_FILTER_ID with the values :

'NONE':	No filtering
'CONVOL_KERNEL_1':	0.5 FW HM gauss filter
'CONVOL_KERNEL_2':	0.8 FW HM gauss filter
'CONVOL_KERNEL_3':	1.0 FW HM gauss filter

If the sqrt filter has been used the SQRT_FILTER_FLAG is set to TRUE and that gain used is written in SQRT_FILTER_GAIN.

6 File Naming Convention

6.1 The OSIRIS archive filename convention

The OSIRIS image files as archived in the project internal archive (please note NOT the PDS archive) use the following filename convention:

Field	Description						
CCC	eitherNAC (narrow angle camera)						
	or WAC (wide angle camera)						
YYYY	is the year of acquisition						
MM	is the month of acquisition						
DD	is the day of acquisition						
Т	is the letter T (stands for "Time")						
HH	is the hour of acquisition						
MM	is the minute of acquisition						
SS	is the second of acquisition						
UUU	is the milli-second of acquisition						
FF	is the image file type:						
	the following filetypes are possible:						
	ID Image Data (Normal images)						
	TH Thumbnail version of the image						
	(Highly compression version						
	transmitted immidiately)						
	PA Amplifier A pre pixels (calibration data)						
	PB Amplifier B pre pixels (calibration data)						
	OL Overclocked lines (calibration data)						
T	is the OSIRIS processing level of the image						
L	is the instance id if the image						
1	(multiple transmissions of an image will be						
	reflected in this number incrementing)						
NNNNNNNNN	Ten digit user defined image ID number						
	(Specified by the user when writing the command						
	timeline)						
F	is the letter F (stands for "Filter")						
A	is the position index of the filter wheel #1						
B	is the position index of the filter wheel #?						
JMG	File extension						

CCC_YYYY-MM-DDTHH.MM.SS.UUUZ_FFLI_NNNNNNNN_FAB.IMG

Table 7 OSIRIS PDS data file filename elements

Example:

NAC_2003-10-16T13.50.05.012Z_ID21_000000001_F82.img

Is a NAC image acquired at 2003-10-16T13:50:05.012 UTC

The file contains CCD image data (image type ID) with raw image data (level 1) and the image represents the 2^{nd} transmission of the image data. The image was acquired using the filter combination (8,2). The image ID is 1. The time is the start time of the exposure.

Note! The filename contains an approximate time of acquisition. This time value is only used to uniquely identify the image and should not be used for any calculation needing high precision. The time value in the filename has not been corrected for onboard clock drift and leap seconds. The best possible knowledge about the time of acquisition can be found in the header label START_TIME

6.2 The PDS archive filename convention

The OSIRIS image files as archived in the PDS use the following filename convention:

Field	Description					
С	either N NAC (narrow angle camera)					
	or W WAC (wide angle camera)					
YYYY	is the year of acquisition					
MM	is the month of acquisition					
DD	is the day of acquisition					
Т	is the letter T (stands for "Time")					
HH	is the hour of acquisition					
MM	is the minute of acquisition					
SS	is the second of acquisition					
UUU	is the milli-second of acquisition					
FF	is the image file type:					
	the following file types are possible:					
	ID Image Data (Normal images)					
	TH Thumbnail version of the image					
	(Highly compressed version					
	transmitted immediately)					
	PA Amplifier A pre pixels (calibration data)					
	PB Amplifier B pre pixels (calibration data)					
	OL Overclocked lines (calibration data)					
T	is the CODMAC processing level of the image					
I	is the instance id if the image					
1	(multiple transmissions of an image will be					
	reflected in this number incrementing)					
F	is the letter F (stands for "Filter")					
A	is the position index of the filter wheel #1					
B	is the position index of the filter wheel #2					
JMG	File extension					

CYYYYMMDDTHHMMSSUUUFFLIFA B.IMG

Table 8 OSIRIS PDS data file filename elements

Example:

W20040923T071606570ID12F12.img

Is a WAC image acquired at 2004-09-23 at 07:16:06.657 UTC

The file contains CCD image data (image type ID) with raw image data (level 1) and the image represents the 2nd transmission of the image data. The image was acquired using the filter combination (1,2) = Hole+Red for the WAC.

Note! The filename contains an approximate time of acquisition. This time value is only used to uniquely identify the image and should not be used for any calculation needing high precision. The time value in the filename has not been corrected for onboard clock drift and leap seconds. The best possible knowledge about the time of acquisition can be found in the header label START_TIME

7 Coordinate Systems

There are a number of coordinate system relevant to the interpretation of OSIRIS data. The se coordinate system can be separated into two groups: a. pixel coordinate systems referring directly to the CCD and b. inertial coordinate systems referring to the spacecraft and viewing geometry.

7.1 CCD coordinate frames

The following four CCD frames are defined for the OSIRIS NAC CCD:

7.1.1 NAC_AMPLIFIER_A_ELECTRICAL

Pixel (0,0) is the first physical CCD pixel that reaches the ADC when using the A amplifier electrical chain. The X-axis corresponds to the CCD horizontal direction and the Y-axis corresponds to the CCD vertical direction (positive away from the serial register)

7.1.2 NAC_AMPLIFIER_B_ELECTRICAL

Pixel (0,0) is the first physical CCD pixel that reaches the ADC when using the B amplifier electrical chain. The X-axis corresponds to the CCD horizontal direction and the Y-axis corresponds to the CCD vertical direction (positive away from the serial register)

7.1.3 NAC_AMPLIFIER_BOTH_ELECTRICAL

Pixel (0,0) is the first physical CCD pixel that reaches the ADC when using the both amplifier electrical chains in paralel. The X-axis corresponds to the CCD horizontal direction and the Y-axis corresponds to the CCD vertical direction (positive away from the serial register)

The NAC_AMPLIFIER_BOTH_ELECTRICAL frame is identical to the NAC_AMPLIFIER_A_ELECTRICAL frame.

7.1.4 NAC_CCD_REFERENCE

The NAC_CCD_REFERENCE frame is the coordinate frame relevant to all CODMAC 2 to 3 PDS image files.

The NAC_CCD_REFERENCE frame is identical to the NAC_AMPLIFIER_A_ELECTRICAL frame.

Figure 10 The NAC CCD frames

The following four CCD frames are defined for the OSIRIS WAC CCD:

7.1.5 WAC_AMPLIFIER_A_ELECTRICAL

Pixel (0,0) is the first physical CCD pixel that reaches the ADC when using the A amplifier electrical chain. The X-axis corresponds to the CCD horizontal direction and the Y-axis corresponds to the CCD vertical direction (positive away from the serial register)

7.1.6 WAC_AMPLIFIER_B_ELECTRICAL

Pixel (0,0) is the first physical CCD pixel that reaches the ADC when using the B amplifier electrical chain. The X-axis corresponds to the CCD horizontal direction and the Y-axis corresponds to the CCD vertical direction (positive away from the serial register)

7.1.7 WAC_AMPLIFIER_BOTH_ELECTRICAL

Pixel (0,0) is the first physical CCD pixel that reaches the ADC when using the both amplifier electrical chains in paralel. The X-axis corresponds to the CCD horizontal direction and the Y-axis corresponds to the CCD vertical direction (positive away from the serial register)

The NAC_AMPLIFIER_BOTH_ELECTRICAL frame is identical to the NAC_AMPLIFIER_A_ELECTRICAL frame.

7.1.8 WAC_CCD_REFERENCE

The WAC_CCD_REFERENCE frame is the coordinate frame relevant to all CODMAC 2 to 3 PDS image files.

The WAC_CCD_REFERENCE frame is identical to the WAC_AMPLIFIER_A_ELECTRICAL frame.

Figure 11 The WAC CCD frames

The WAC_CCD_REFERENCE frame +X is approximately equal to NAC_CCD_REFERENCE frame -X.

7.2 Inertial Coordinate Frames

7.2.1 Earth mean equator and equinox of J2000 (EME J2000)

International astronomical inertial reference frame (epoch J2000)

7.2.2 The Rosetta spacecraft coordinate frame:

The Rosetta spacecraft coordinate frame (S/C-COORDS) is defined with the +Z axis orthogonal to the instrument panel (average pointing of remote sensing instruments). The +Y axis is oriented along the solar panels and the +X is orthogonal to the high gain antenna mounting panel. The Rosetta spacecraft coordinate frame can be addressing in the SPICE system using the coordinate frame alias "ROS_SPACECRAFT".

Figure 12 The Rosetta spacecraft coordinate frame (S/C-COORDS) definition

7.2.3 Camera Frames:

7.2.3.1 NAC_CAMERA_FRAME:

The NAC_CAMERA_FRAME is defined with origin at the center of the entrance aperture of the NAC camera with the +X axis along the image horizontal axis and the +Y axis along the vertical image direction. The +Z axis is defined as the right hand coordinate system defined by +X and +Y. Please note that for the NAC the +Z axis points in the opposite direction of the viewing direction.

The exact transformation can be found using the CAMERA_COORDINATE_SYSTEM label group in NAC images.

7.2.3.2 WAC_CAMERA_FRAME:

The WAC_CAMERA_FRAME is defined with origin at the center of the entrance aperture of the NAC camera with the +X axis along the image horizontal axis and the +Y axis along the vertical image direction. The +Z axis is defined as the right hand coordinate system defined by +X and +Y. Please note that for the WAC the +Z axis is pointed in the same direction as the boresight viewing direction.

The exact transformation can be found using the CAMERA_COORDINATE_SYSTEM label group in WAC images.

7.3 Displaying the OSIRIS images

The OSIRIS images are stored using the following format

Header	
Pixel 0,0	
	Divoluub

This structure means that the image (as is typical for PDS images) needs to be vertically flipped to be correctly displayed on a typical computer screen.

On top of this the images from the narrow angle camera requires a horizontal flip to be shown with in the same geometry as the wide angle camera images.

To summarize:

OSINAC images: flip horizontally + flip vertically OSIWAC images: flip vertically

Using these transformations the x-image axis is roughly aligned with the spacecraft y axis and the y-image axis is roughly aligned with the spacecraft x-axis.

8 The OSIRIS EDR and RDR PDS Labels

8.1 System Labels

Label	Group	Namespace	Datatype	Unit	Description	Source
PDS_VERSION_ID			Label		PDS version identifier	Fixed
LABEL_REVISION_NOTE			String		PDS label set version	Fixed
RECORD_TYPE			Label		PDS System Label	Fixed
RECORD_BYTES			Integer		Number of bytes in a record block	Image converter
FILE_RECORDS			Integer		Number of records in the file	Image converter
LABEL_RECORDS			Integer		Number of records in the PDS label header	Image converter
FILE_NAME			String		Original filename	Image Converter
^IMAGE			Pointer		Offset of the image data within the file (in records)	Image Converter
^BLADE1_PULSE_ARRAY			Pointer		Offset of the shutter blade 1 position encoder data within the file (in records)	Image Converter
					Note: This field only exists if blade 1 shutter pulse data exists in the data	
^BLADE2_PULSE_ARRAY			Pointer		Offset of the shutter blade 2 position encoder data within the file (in records)	Image Converter

		Note: This field only exists if blade 2 shutter pulse data exists in the data	
SOFTWARE_DESC	String	Description of the software that generated the PDS file	Image converter
SOFTWARE_NAME	String	Filename of the image converter	Image converter
SOFTWARE_VERSION_ID	String	Version of the image converter	Image converter
SOFTWARE_RELEASE_DATE	String	Release date of the image converter	Image converter

8.2 Mission Identification

Label	Group	Namespace	Datatype	Unit	Description	Source
INSTRUMENT_HOST_ID			String		ID of the instrument host	Fixed
INSTRUMENT_HOST_NAME			String		Name of mission	Fixed
MISSION_ID			String		ID of mission	Fixed
MISSION_NAME			String		Name of mission	Fixed
MISSION_PHASE_NAME			String		Name of overall mission phase	Image
						converter

8.3 Instrument and image Identification

Label	Group	Namespace	Datatype	Unit	Description	Source
INSTRUMENT_ID			String		ID of the instrument	TM
					Fither OSINAC or OSIWAC	
INSTRUMENT_NAME			String		Description of instrument	TM/Fixed
INSTRUMENT_TYPE			String		Short description of the instrument	TM/Fixed
DETECTOR_DESC			String		Description of the detector system	Fixed
DETECTOR_PIXEL_WIDTH			Float	um	Width of a single pixel	Fixed
DETECTOR_PIXEL_HEIGHT			Float	um	Height of a single pixel	Fixed
DETECTOR_TYPE			String		Type of detector	Fixed
DETECTOR_ID			String		ID of detector	TM/Fixed
DETECTOR_TEMPERATURE			Float	K	Temperature of the CCD detector in Kelvin	TM
ELEVATION_FOV			Float	deg	Full Field of view of the instrument in elevation in degrees	Fixed
AZIMUTH_FOV			Float	deg	Full Field of view of the instrument in azimuth in degrees	Fixed
TELESCOPE_RESOLUTION			Float	rad	IFOV of instrument in rad	Fixed
TELESCOPE_F_NUM BER			Float		Telescope F number	Fixed

TELESCOPE_FOCAL_LENGTH		Float	m	Telescope focal length	Fixed
IMAGE_ID		Integer		User defined image ID number	ТМ
PROCESSING_ID	ROSETTA	Integer		The OSIRIS DPU has the capability to make multiple transfers of the same set of images data (The image can for example be first transferred as a highly compressed thumbnail image for quick look purposes followed later by a transfer of the same pixel data as a less compressed version). The value of the processing_id will be unique for each transfer)	ТМ
IMAGE_OBSERVATION_TYPE		String		Type of observation: REGULAR for normal observations BIAS for 0 sec dark exposures DARK for > 0 sec dark exposures	TM
EXPOSURE_TYPE		String		Type of exposure: <i>AUTO</i> for auto exposures <i>MANUAL</i> for manual exposures	TM
PRODUCT_ID		String		ID of EDR	Image converter
PRODUCT_TYPE		String		ID of data product EDR for level 2 data RDR for > level 2 data	Fixed

PRODUCT_VERSION_ID	String	Release version of product	Image Converter
PRODUCER_INSTITUTION_NAME	String	Name of the institution that produced the data product	Fixed
PRODUCER_FULL_NAME	String	Name of person that generated the data product	Fixed
PRODUCER_ID	String	ID of institution that generated the data product	Fixed
MEDIUM_TYPE		The med iu m_type element identifies the physical storage mediu m for a data volume.	Fixed
PUBLICATION_DATE	Date	The publication_date element provides the date when a published item, such as a document or a compact disc, was issued.	Fixed
VOLUME_FORMAT	Sting	The volume_format element identifies the logical format used in writing a data volume, such as ANSI, TAR, or BACKUP for tape volumes and ISO-9660, HIGH-SIERRA, for CD- ROM volumes.	Fixed
VOLUME_ID	String	The volume_id element provides a unique identifier for a data volume	Fixed
VOLUME_NAME	String	The volume_name element contains the name of a data volume. In most cases the	Fixed

		volume_name is more specific than the volume_set_name.	
VOLUME_SERIES_NAME	String	The volume_series_name element provides a full, formal name that describes a broad categorization of data products or data sets related to a planetary body or a research campaign (e.g. International Halley Watch). A volume series consists of one or more volume sets that represent data from one or more missions or campaigns.	Fixed
VOLUME_SET_NAME	String	The volume_set_name element provides the full, formal name of one or more data volumes containing a single data set or a collection of related data sets. Volume sets are normally considered as a single orderable entity.	Fixed
VOLUME_SET_ID	String	The volume_set_id element identifies a data volume or a set of volumes. Volume sets are normally considered as a single orderable entity.	Fixed
VOLUME_VERSION_ID	String	The volume_version_id element indentifies the version of a data volume.	Fixed

			All original volumes should	
			use a volume_version_id of	
			'Version 1'. Versions are	
			used when data products are	
			remade due to errors or	
			limitations in the original	
			volumes (test volumes, for	
			example), and the new	
			version makes the previous	
			volume obsolete.	
			Enhancements or revisions	
			to data products which	
			constitute alternate data	
			products should be assigned	
			a unique volume id not a	
			new version id	
VOLUMES		String	The volumes element	Fixed
VOLUMED		String	provides the number of	1 IACO
			provides the humber of	
			physical data volumes	
			contained in a volume set.	
DATA_SET_ID		String	ID of the PDS dataset to which	Fixed
		-	the data product belongs	
DATA_SET_NAME		String	Description of the dataset to	Fixed
			which the data product belongs	
PROCESSING_LEVEL_ID		Integer	Processing level:	Image converter
			0: Pay TM	
			U. Naw IW 1: Uncelibrated basder + revu	
			image data	
			2: Calibrated header + raw	
			$\frac{2}{100}$ image data	
			3: Calibrated header +	
			calibrated image data	
			4: Calibrated header +	

		geometrically corrected image data	
PROCESSING_LEVEL_DESC	String	Description of the processing level	Image converter
DATA_QUALITY_ID	Integer	The data_quality_id element provides a numeric key which identifies the quality of data available for a particular time period. The data_quality_id scheme is unique to a given instrument and is described by the associated data_quality_desc element. Note that the field exists in the OSIRIS labels but will always contain the value 0 So do not use! The real quality estimate is located in the QUALITY_MAP_IMAGE objects residing in the reduced data records	
DATA_QUALTITY_DESC	String	The data_quality_desc element describes the data quality which is associated with a particular data_quality_id value. The various values of	

		data_quality_id and	
		data_quality_desc are	
		instrument dependent.	

8.4 Sequence identification Group

Please not that the following labels only exists in data files in the internal OSIRIS archive not in the PDS archive because the labels are not PDS compliant. In PDS archived images these labels are found in the history object!

Label	Group	Namespace	Datatype	Unit	Description	Source
ORFA_SUBMISSION_ID	Non PDS		integer		Each sequence formally delivered for uplink to the spacecraft contains is assigned an identification numver (The ORFA submission index) This label contains this release index Please note that this field does not exists in the PDS archive label	Telemetry + ground database
COMMAND_INDEX	Non PDS		integer		Each command within a sequence has a unique identification index. This label contains this index Please note that this field does not exists in the PDS archive label	Telemetry + ground database
COMMAND_IMA GE_INDEX	Non PDS		integer		An OSIRIS telecommand can generate more than one image. The first image acquired by a given telecommand will have the index 0, the next one 1 and so forth. Please note that this field does not exists in the PDS	Telemetry + ground database

			archive label	
ACTIVITY_NAME	Non PDS	string	Each mission phase is composed of several activities. Activities can for example be a checkout phase or a science activity like the M ars Swing-by closest approach. The activity name contains a short descriptive name of the activity within which the image was acquired. An example could be "PC8" or "M ars-Swing-By" Please note that this field does not exists in the PDS archive label	Telemetry + ground database
ACTIVITY_TYPE	Non PDS	string	The activity type field contains a short descriptive string of the type of activity performed: Values can for example be: "SCIENCE" "CHECKOUT" "ACTIVE_CHECKOUT" "IFSW_UPDATE" Please note that this field does not exists in the PDS archive label	Telemetry + ground database
OBSERVATION_DESCRIPTION	Non PDS	string	Each activity can be	Telemetry + ground
			composed of several observations. For example the Mars Swing By activity can be composed of a stellar calibration observation, a Mars observation at closest approach, a Phobos observation and so forth.	database
------------------	---------	--------	--	--------------------------------
			Each observation is coupled to a specific operational request and to a specific command sequence (OIOR)	
			The observation description field contains a short human readable description of the observation	
			Please note that this field does not exists in the PDS archive label	
OBSERVATION_NAME	Non PDS	string	Each activity can be composed of several observations. For example the Mars Swing By activity can be composed of a stellar calibration observation, a Mars observation at closest approach, a Phobos observation and so forth.	Telemetry + ground database
			Each observation is coupled to a specific operational request and to a specific command sequence (OIOR) Each request has a specific ID	

			string assigned during the planning phase. The observation name contains this ID string. The string will usually have the format "SR_XXX" where XXX is a number or refence. Please note that this field does not exists in the PDS archive label	
OIOR_FILENAME	Non PDS	string	Each observation isTcommanded using a so calleddOIOR command sequencedfile. The OIOR_FILENAMEcontains the filename of thecontains the filename of thegenerate the imagePlease note that this fielddoes not exists in the PDSarchive labelarchive label	Telemetry + ground database
PLANNING_PHASE	Non PDS	string	OSIRIS is planned in cyclesTcap pled planning phases.dEach planning phase has anidentification number. ThePLANNING_PHASE fieldcontains this ID numberPlease note that this fielddoes not exists in the PDSarchive labelarchive label	Telemetry + ground database

8.5 Time Identification

Label	Group	Namespace	Datatype	Unit	Description	Source
PRODUCT_CREATION_TIME			Time	UTC	Time when the data product	Image converter
					was generated in UTC	
START_TIME			Time	UTC	Start of the exposure in UTC	TM/SPICE
					Please note that the value	
					stored in START_TIME is	
					the most precise time known	
					at the time of file generation.	
					The START_TIME has been	
					corrected for on board clock	
STOD THE			T:	UTC	drift and leap seconds	TM/CDICE
STOP_TIME			1 ime	UIC	UTC	IM/SPICE
SPACECRAFT_CLOCK_START_COUNT			SCLK	S/C clock	Start of the exposure in raw	ТМ
				count	spacecraft clock count	
					Format:	
					<reset>/<high count="">:<low< td=""><td></td></low<></high></reset>	
					count>	
SPACECRAFT_CLOCK_STOP_COUNT			SCLK	S/C clock	Start of image readout in raw	ТМ
				count	spacecraft clock count	
					Format:	
					<reset>/<high count="">:<low< td=""><td></td></low<></high></reset>	
					count>	
SSM M_TIM E	Non PDS		Time	UTC	Contains the time the images	TM
					internal data link between the	
					OSIRIS instrument and the	
					spacecraft storage file (The	
					Solid State Mass Memory	
					(SSMM))	

				Please note that this field does not exists in the PDS archive label
EPHEMERIS_START_TIME	Non PDS	float	S	Contains the number of seconds from the start of the J2000 epoch corrected for leap seconds.
				Please note that this field does not exists in the PDS archive label

8.6 Observation geometry

Label	Group	Namespace	Datatype	Unit	Description	Source
TARGET_NAME			String		Name of the observation	SPICE
TARGET_TYPE			String		Type of target. On of the following values: TEST_POINTING STAR MOON PLANET COMET ASTEROID NEBULA 	
SC_SUN_POSITION_VECTOR			3-vector	km	Vector from the S/C to the sun (X,Y,Z) in J2000 The vector is light-time corrected	
SPACECRAFT_SOLAR_DISTANCE			Float	km	Spacecraft distance from the Sun	SPICE
SOLAR_ELONGATION			Float	deg	The solar elongation angle (angle between a vection from the S/C to the sun, and the S/C +Z axis)	SPICE
RIGHT_ASCENSION			Float	deg	The right ascension of the S/C +Z axis specified in J2000 with coordinate system center in the S/C	SPICE
DECLINATION			Float	deg	The declination of the S/C +Z axis specified in J2000 with coordinate system center in the S/C	SPICE

ROLL_ANGLE	Non PDS (Not PDS compliant)	Float	deg	The roll angle of the spacecraft in J2000 at the time the image was acquired Please note that this field does not exists in the PDS archive label	SPICE
LIGHT_SOURCE_PHASE_ANGLE		Float	deg	The light source phase angle element provides a measure of the relationship between the spacecraft viewing position and the light source. Light source phase angle is defined as the angle between a vector from the intercept point to the light source and a vector from the intercept point to the spacecraft.	SPICE
NORTH_AZIMUTH		Float	deg	The north_azimuth element provides the value of the angle between a line from the image center to the north pole and a reference line in the image plane. The reference line is a horizontal line from the image center to the middle right edge of the image. This angle increases in a clockwise direction.	SPICE
SC_TARGET_POSITION_VECTOR		Float 3 vector	None or km	If solar system object this field contains the vector from the S/C to the target object in km. The vector is light-time corrected If stellar target object this	SPICE

				field contains a unit vector towards the target object	
TARGET_CENTER_DISTANCE		Float	km	Distance to the target object. (only valid for solar system objects)	SPICE
SPACECRAFT_ALTITUDE		float	km	The height of the spacecraft over the surface of an extended target object. For example at Mars the center distance gives the distance to the center of Mars while the altitude is the distance to the surface of Mars.	
SUB_SPACECRAFT_LATITUDE		float	deg	With the spacecraft flying over an extended object a vector can be drawn from the center og the planet to the spacecraft. This vector intersects the target surface at a specific latitude and longitude in the given IAU_XXX rotating coordinate system of the target. This field contains the latitude	
SUB_SPACECRAFT_LONGITUDE		float	deg	With the spacecraft flying over an extended object a vector can be drawn from the center og the planet to the spacecraft. This vector intersects the target surface at a specific latitude and	

				longitude in the given IAU_XXX rotating coordinate system of the target. This field contains the longitude	
COORDINATE_SYSTEM_NAME	SC_COORDINATE_SYSTEM			Name of the coordinate system Always: "S/C-COORDS"	Fixed
ORIGIN_OFFSET_VECTOR	SC_COORDINATE_SYSTEM	3-vector	km	Offset vector from J2000 origin to the origin of the rosetta spacecraft coordinate system Meaning the vector in J2000 from the origin of the J2000 coordinate system to the origin of the S/C coordinate system.	SPICE
ORIGIN_ROTATION_QUATERNION	SC_COORDINATE_SYSTEM	4-vector		Rotation quaternion for transforming from J2000 to the Rosetta spacecraft coordinate system The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to [q3, q0, q1, q2]	SPICE

QUATERNION_DESC	SC_COORDINATE_SYSTEM		Description of the quaternion	Fixed
REFERENCE_COORD_SYSTEM_NAME	SC_COORDINATE_SYSTEM		Name of the reference coordinate system. Always EME J2000	Fixed
COORDINATE_SYSTEM_NAME	CAMERA_COORDINATE_SYSTEM		Name of the coordinate system Either: NAC_CAMERA_FRAME Or WAC_CAMERA_FRAME	TM
ORIGIN_OFFSET_VECTOR	CAMERA_COORDINATE_SYSTEM	3-vector km	Offset vector from S/C- COORDS origin to the origin of the camera frame Meaning a vector in the space craft coordinate system from the origin of the space craft coordinate system to the origin of the camera coordinate system.	SPICE
ORIGIN_ROTATION_QUATERNION	CAMERA_COORDINATE_SYSTEM	4-vector	Rotation quaternion for transforming from S/C- COORDS to the camera frame. The quaternion is stored using the ESA quaternion convention which is [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)] To use the quaternion in the SPICE system the vector needs to be transformed to	SPICE

			[q3, q0, q1, q2]	
QUATERNION_DESC	CAMERA_COORDINATE_SYSTEM		Description of the quaternion	Fixed
REFERENCE_COORD_SYSTEM_NAME	CAMERA_COORDINATE_SYSTEM		Name of the reference coordinate system (always S/C-COORDS)	Fixed
SPICE_FILE_NAME		String vector	List of the spice kernels used to generate the geometry information in the label. The order of the list is identical to the loading order into SPICE	SPICE

8.7 Display geometry

Label	Group	Namespace	Datatype	Unit	Description	Source
LINE_DISPLA Y_DIRECTION			Label		The LINE_DISPLAY_DIRECTION element is the preferred orientation of lines within an image viewing on a display device. The default is DOWN, meaning samples are viewed from top to bottom on the display. Allowed values: DOWN, LEFT, RIGHT, UP	SPICE
SAMPLE_DISPLAY_DIRECTION			Label		The SAMPLE_DISPLAY_DIRECTION element is the preferred orientation of samples within a line for viewing on a display device. The default is RIGHT, meaning samples are	Fixed

		viewed from left to right on the display.
		Allowed values: DOWN,
		RIGHT, UP

8.8 Status Flags Group

Label	Group	Namespace	Datatype	Unit	Description	Source
SHUTTER_FOUND_IN_ERROR_FLAG	SR_STATUS_FLAGS	ROSETTA	Label		TRUE if the shutter mechanism had to be reset before executing the exposure else FALSE	TM
SHUTTER_PRE_INIT_FAILED_FLAG	SR_STATUS_FLAGS	ROSETTA	Label		TRUE if the pre initiation of the shutter mechanism failed else FALSE	ТМ
ERROR_RECOVER Y_FAILED_FLAG	SR_STATUS_FLAGS	ROSETTA	Label		TRUE if error recovery of the shutter mechanism failed else FALSE	TM
EXPOSURE_STATUS_ID	SR_STATUS_FLAGS	ROSETTA	Label		SUCCESS if no problems were detected during the exposure FAILURE if an error occurred	TM

Label	Group	Namespace	Datatype	Unit	Description	Source
FILTER_NUMBER	SR_MECHANISM_STATUS		Integer		OSIRIS is equipped with a dual filter wheel for doing multispectral imaging. The filter number contains the index of the filter combination that was in the optical beam when the image was acquired. The index is coded as a two digit number (AB) where A is the filter index of the first filter wheel and B is the index of the second filter wheel (for example 12 would mean wheel 1 at index 1 and wheel two at index 2)	TM
FILTER_NAME	SR_MECHANISM_STATUS		String		Names of the two commanded filters in the optical path. The name is coded as <name filter<br="" of="">in wheel 1>_<name of<br="">filter in wheel 2> (for example Empty_Red)</name></name>	TM
FRONT_DOOR_STATUS_ID	SR_MECHANISM_STATUS	ROSETTA	Label		OSIRIS is equipped with a front door that blocks the optical beam into the camera when the camera is switched off.	

		This field tells if the	
		front door was open or	
		closed when the image	
		was acquired. (Please	
		note that many image are	
		actually acquired with	
		the door closed since the	
		interior of the door acts	
		as a calibration target for	
		the camera)	
		Possible values:	
		OPEN	
		CLOSED	
		UNKNOWN	

8.10	Image	Acquisition	Options	Group
------	-------	-------------	----------------	-------

Label	Group	Namespace	Datatype	Unit	Description	Source
SCIENCE_DATA_LINK	SR_ACQUIRE_OPTIONS	ROSETTA	Label		OSIRIS has two data link to the spacecraft. The HIGHSPEED link is a multi megabit per second IEEE 1355 link used for normal transfer of image data to the spacecraft. Additionally there is a low speed link (the RTU link) normally used for housekeeping acquisition and event data. Image data can also be transferred through this low speed link Possible values: HIGHSPEED RTU BOTH NONE	TM
DATA_ROUTING_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label		OSIRIS has a number of data telemetry queues for managing the order of downlink. The data routing field contains the ID of the queue used to acquire the image IMAGEMEM QUEUE1 QUEUE2 QUEUE3 QUEUE3 QUEUE4 QUEUE5 PLAINFILE STORED	TM
EXPOSURE_DURATION	SR_ACQUIRE_OPTIONS		Float	S	This field contains the exposure time used to acquired the image	TM

COMM ANDED_FILTER_NUMBER	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	OSIRIS has a dual filter wheel in the optical beam. This field contains the index of the filter combination. The index is coded as a two digit number (AB) where A is the filter index of the first filter wheel and B is the index of the second filter wheel (for example 12 would mean wheel 1 at index 1 and wheel two at index 2)	TM
COMMANDED_FILTER_NAME	SR_ACQUIRE_OPTIONS	ROSETTA	String	Names of the two commanded filters in the optical path. The name is coded as <name 1="" filter="" in="" of="" wheel="">_<name of<br="">filter in wheel 2> (for example Empty_Red)</name></name>	ТМ
GRAYSCALE_TESTMODE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	The OSIRIS CCD readout electronics has a test mode where the electronics transmits a synthetic grayscale test pattern. This test pattern can be used to diagnose problems with the communication links inside OSIRIS This field is a Boolean telling if the image were acquired using this test mode. TRUE FALSE	ТМ
HARDWARE_BINNING_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can bit data two ways: 1. in a software pixel averaging mode and 2. using a hardware driven binning mode. The hardware binning id specifies what hardware mode were used. The following modes are possible <i>Ix1: Each input pixel becomes an</i>	ТМ

AMPLIFIER_ID SR_ACQUIRE_OPTIONS ROSETTA Label OSIRIS can clock the CCD out using three methods: TM A: The data is clocked left in the horizontal direction and passed through the A amplifier chain B: The data is clocked right in the horizontal direction and passed through the B amplifier chain B: The data is clocked right in the horizontal direction and passed through the B amplifier chain B: The data is clocked right in the horizontal direction and passed through the B amplifier chain B: The data is clocked right in the horizontal direction and passed through the B amplifier chain B: The data is clocked right in the horizontal direction and passed through the B amplifier chain B: The data is clocked right in the horizontal direction and passed through the B channel. This field specifies what amplifier chain B: The data is clocked through the B channel. This field specifies what amplifier chains were used: A B: BOTH B: BOTH					output pixel 2x2: Each 2x2 input block becomes an output pixel 4x4: Each 4x4 input block becomes an output pixel 8x8: Each 8x8 input block becomes an output pixel Please note that the hardware binning mode has an influence on the effective exposure time: 1x1 -> time 2x2 -> 4 x time 4x4 -> 16 x time	
	AMPLIFIER_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can clock the CCD out using three methods: A: The data is clocked left in the horizontal direction and passed throught the A amplifier chain B: The data is clocked right in the horizontal direction and passed throught the B amplifier chain BOTH: Where the left half of the CCD is clocked through the A channel and the right half of the CCD is clocked through the B channel. This field specifies what amplifier chains were used: A BOTH	TM

				amplifier gain settings (LOW and HIGH) This field tells what gain setting was used to acquire the image LOW HIGH	
ADC_ID	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has a 16 bit digital converter that is actually composed of two 14 bit analog to digital converters working in series. OSIRIS can be operated in three ADC mode:The ADC mode:LOW : only the low 14 bit ADC is used HIGH: only the high 14 bit ADC is used TANDEM: Both low and hight ADC is used to build the final 16 data numberThe Document of the series of the s	ΤM
OVERCLOCKING_LINES_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operation mode where the CCD ready keep clocking for an additional number of lines after having clocked out all the physical pixels of the CCD. The mode allows calibration of the charge transfer efficiency of the CCD in the vertical clocking direction.This field is a boolean telling if this operational mode was used. TRUE FALSE	ΤM
OVERCLOCKING_PIXELS_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operation mode where The CCD ready keep clocking for an	ſΜ

				additional number of pixels after having clocked out all the physical pixels of the CCD. The mode allows calibration of the charge transfer efficiency of the CCD in the horizontal clocking direction.This field is a boolean telling if this operational mode was used.TRUE FALSE
CCD_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to skip the readout of the CCD when acquiring an image. TM This field is a boolean telling if the CCD data was actually read out. TRUE FALSE
ADC_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to either keep the analog to digital converters (ADC) powered always or to only power the ADC when an image is acquired. TM This field is a boolean telling if the ADC were kept powered (the default). TRUE FALSE
BLADE1_PULSES_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to retrive or discard shutter pulse data during operations of the mechanical shutter mechanism.

				This field is a boolean telling if shutter pulses were acquired for the first blade of the shutter. <i>TRUE</i> <i>FALSE</i>	
BLADE2_PULSES_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can be configured to retrive or discard shutter pulse data during operations of the mechanical shutter mechanism. This field is a boolean telling if shutter pulses were acquired for the second blade of the shutter. TRUE FALSE	ТМ
BULBMODE_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operational mode for acquiring very long exposures. In this mode the exposure is commanded to start followed by another command to stop the exposure. This mode is only used for exposures longer than 2^23 milliseconds. This field is a boolean telling if the this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ
FRAMETRANSFER_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an emergency fallback failsafe mode for acquiring images in case the mechanical shutter would fail during the mission.	ТМ

				This field is a boolean telling if the this operational mode was used: TRUE FALSE	
WINDOWING_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS can acquire images using a software windowing mode or a hardware windowing mode. (Meaning reading out only a small part of the full CCD surface) This field is a boolean telling if the hardware windowing mode was used during the exposure TRUE FALSE	ГМ
SHUTTER_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS is equipped with a mechanical shutter mechanism . T This field is a boolean telling if the mechanical shutter was operated during the exposure. T TRUE FALSE T	ГМ
DITHERING_ENABLED_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	At high CCD temperature OSIRIS can be operated in a special noise reduction mode (called clock dithering) T This field is a boolean telling if the this operational mode was used: T TRUE FALSE FALSE	ГМ

CRB_DUMP_MODE	SR_ACQUIRE_OPTIONS	ROSETTA	Integer		Internal CRB configuration	TM
CRB_PULSE_MODE	SR_ACQUIRE_OPTIONS	ROSETTA	Integer		Internal CRB configuration	TM
SUBFRAME_COORDINATE_ID	SR_ACQUIRE_OPTIONS	ROSETTA	String		What subframe coordinate system is used in the X_START, X_END, Y_START, Y_END tags? OPTICAL ELECTRICAL	Fixed
X_START	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	First column of the hardware sub frame used to acquire the image. Note this value is specified in ELECTRICAL CCD coordinates Please note that the coordinate value given reflects the configuration used to actually acquire the image from the hardware. The value cannot be used for determining the sub frame of the image data in the image file since downstream processing can change the effective sub frame. For this purpose please use the FIRST_LINE_SAMPLE field in the IMAGE object	ТМ
X_END	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	Last column (inclusive) of the hardware sub frame used to acquire the image. Note this value is specified in ELECTRICAL CCD coordinates Please note that the coordinate value	TM

					given reflects the configuration used to actually acquire the image from the hardware. The value can not be used for determining the sub frame of the image data in the image file since downstream processing can change the effective sub frame. For this purpose please use the FIRST_LINE_SAMPLE + LINES fields in the IMAGE object	
Y_START	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	 First row of the hardware sub frame used to acquire the image. Note this value is specified in ELECTRICAL CCD coordinates Please note that the coordinate value given reflects the configuration used to actually acquire the image from the hardware. The value cannot be used for determining the sub frame of the image data in the image file since downstream processing can change the effective sub frame. For this purpose please use the FIRST_LINE field in the IMAGE object 	ТМ
Y_END	SR_ACQUIRE_OPTIONS	ROSETTA	Integer	pixels	Last row (inclusive) of the hardware sub frame used to acquire the image. Note this value is specified in ELECTRICAL CCD coordinates Please note that the coordinate value given reflects the configuration used to	ТМ

					actually acquire the image from the hardware. The value cannot be used for determining the sub frame of the image data in the image file since downstream processing can change the effective sub frame. For this purpose please use the FIRST_LINE + LINES fields in the IMAGE object	
SHUTTER_PRETRIGGER_DURATION	SR_ACQUIRE_OPTIONS	ROSETTA	Float	S	The time between the end of the shutter motion and the start of the CCD readout.	ТМ
CRB_TO_PCM_SYNC_MODE	SR_ACQUIRE_OPTIONS	ROSETTA	Integer		Internal CRB configuration parameter (synchronization between the CRB and the CRB power converter)	ТМ
AUTOEXPOSURE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label		The OSIRIS flight software has the option of having the camera try to optimize the best exposure time for the scene being imaged. This field is a boolean telling if the this operational mode was used: <i>TRUE</i> <i>FALSE</i>	ТМ
LOWPOWER_MODE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label		OSIRIS can acquire image using a special low power mode (used during the eatly comet detection phase of the mission where the spacecraft has no power margin) This field is a boolean telling if the this operational mode was used:	ТМ

				TRUE FALSE	
DUAL_EXPOSURE_FLAG	SR_ACQUIRE_OPTIONS	ROSETTA	Label	OSIRIS has an operation mode where the narrow angle camera and the wide angle camera can be commanded to acquire image synchronized to within a few milliseconds This field is a boolean telling if the this operational mode was used: TRUE FALSE	ТМ

8.11 Mechanical Shutter Configuration Group

Label	Group	Namespace	Datatype	Unit	Description	Source
PROFILE_ID	SR_SHUTTER_CONFIG	ROSETTA	Integer		Timestamp in seconds since epoch 2000 when the shutter mechanism power profile was generated	TM
CONTROL_MASK	SR_SHUTTER_CONFIG	ROSETTA	Hex Integer		Raw control byte used to drive the shutter electronics	TM
TESTMODE_FLAG	SR_SHUTTER_CONFIG	ROSETTA	Label		The shutter can be operated using a special test mode where the number of transmitted pulse data points is only limited by time. When this mode is switched OFF the shutter will always deliver a maximum of 440 pulse points per shutter blade. Was the shutter test mode enabled? TRUE	ТМ

				FALSE
ZEROPULSE_FLAG	SR_SHUTTER_CONFIG	ROSETTA	Label	The zero position encoder is a hall sensor located at a known position relative to the edge of the CCD. When the zero pulse flag is enabled the shutter electronics only starts to transmit pulse data after the shutter blade has passed this encode.The field is a Boolean telling is the zero pulse was enable during the exposureTRUE FALSETRUE FALSE
LOCKING_ENCODER_FLAG	SR_SHUTTER_CONFIG	ROSETTA	Label	The shutter mechanism has a mechanical latch that catches the shutter blade #1 and keeps the shutter open for long exposure times.TMThe shutter mechanism has a hall sensor for detecting hat the blade #1 was actually caught by the latch mechanismThis sensor can be enabled or disabled:The field is a Boolean that is TRUE is the sensor was enabled.TRUE FALSE
CHARGEMODE_ID	SR_SHUTTER_CONFIG	ROSETTA	Label	The shutter mechanism is driven using two motors. The motors draws power from a bank of capasitors that buffers the large power consumption needed during the short time of the actual blade motion.

		This capacitor bank can be recharged using four different mode:	
		OFF: No recharge SLOW: 32 s to recharge NORMAL: 1s to recharge FAST: 0.5 s to recharge	

8.12 Mechanical Shutter Status Group

Label	Group	Namespace	Datatype	Unit	Description	Source
STATUS_MASK	SR_SHUTTER_STATUS	ROSETTA	Hex		Raw status value as returned from the	TM
			Integer		CRB	
ERROR_TYPE_ID	SR_SHUTTER_STATUS	ROSETTA	Label		What error occurred (if any) during the	TM
					exposure?	
					NONE	
					LOCKING_ERROR_A	
					MEMORY_ERROR_B	
					UNLOCKING_ERROR_C	
					SHE_RESET_ERROR_D	

8.13 Image Compression Group

The image compression group contains information about the data compression and pre processing performed on the transmitted image. All labels are vectors of length N where N is the number of image segments used to transmit the image.

Label	Group	Namespace	Datatype	Unit	Description	Source
LOST_PACKETS	SR_COMPRESSION Non PDS (Not PDS compliant)	ROSETTA	Integer vector	packets	Number of lost packets for each image segment	TM
SEGMENT_X	SR_COMPRESSION	ROSETTA	Integer vector		First column in each image segment (zero indexed)	ТМ
SEGMENT_Y	SR_COMPRESSION	ROSETTA	Integer vector		First row in each image segment (zero indexed)	ТМ
SEGMENT_W	SR_COMPRESSION	ROSETTA	Integer vector		Width of each image segment	TM
SEGMENT_H	SR_COMPRESSION	ROSETTA	Integer vector		Height of each image segment	ТМ
ENCODING	SR_COMPRESSION	ROSETTA	Label vector		Name of the compression algorithm used to compress the image Valid values: "NONE": No encoding "SPIHT_D24": SPIHT wavelet based compression used by the OSIRIS flight software before release v2.0 "SPIHT_TAP": SPIHT wavelet based compression using TAP filtering (lossy) "SPIHT_LIFT": SPIHT wavelet based compression using LIFT filtering (normally lossless) "SQRT_16to8": Sqrt based 16 to 8 bit scaling "PACK9BIT": A compression where the data numbers are simply truncated at 9 bit thus discarding the high 7 bits.	ТМ
COMPRESSION_RATIO	SR_COMPRESSION	ROSETTA	Float vector		The effective compression ratio obtained by the image encoder. Example value 16 means 16:1 compression.	ТМ

LOSSLESS_FLAG	SR_COMPRESSION	ROSETTA	Label vector	A flag indicating if the performed compression was lossless TM Either: TRUE lossless compression FALSE lossy compression
SPIHT_PYRAMID_LEVELS	SR_COMPRESSION	ROSETTA	Integer vector	Number of pyramid levels used by the SPIHT compressor TM NA for other encodings than SPIHT Image: Compression of the second
SPIHT_THRESHOLD_BITS	SR_COMPRESSION	ROSETTA	Integer vector	Number of threshold bits used by the SPIHT compressor TM NA for other encodings than SPIHT Image: Comparison of the second s
SPIHT_MEAN	SR_COMPRESSION	ROSETTA	Integer vector	Mean value used by the SPIHT compressor TM NA for other encodings than SPIHT
SPIHT_MEAN_SHIFT	SR_COMPRESSION	ROSETTA	Integer vector	Mean shift value used by the SPIHT compressor TM NA for other encodings than SPIHT
SPIHT_WAVE_LEVELS	SR_COMPRESSION	ROSETTA	Integer vector	Number of wave levels used by the SPIHT compressor TM NA for other encodings than SPIHT
PIXEL_AVERAGING_WIDTH	SR_COMPRESSION	ROSETTA	Integer vector	The OSIRIS flight software allows the image to be averaged in blocks to reduce the data volume before transmission to ground.TMThe pixel averaging width specified the box width used by the processing pipelineI means 1 xN pixel averaging 2 means 2 xN pixel averaging And so forthTM

PIXEL_AVERAGING_HEIGHT	SR_COMPRESSION	ROSETTA	Integer vector	The OSIRIS flight software allows the image to be averaged in blocks to reduce the data volume before transmission to ground.TMThe pixel averaging height specified the box height used by the processing pipelineI means Nx1 pixel averaging 2 means Nx2 pixel averaging And so forthTM
SMOOTH_FILTER_ID	SR_COMPRESSION	ROSETTA	Label vector	The OSIRIS flight software gives the option of passing the image data through a 5x5 convolution filter before passing the image data through the image compressor. TM Possible values: NONE: NONE: No filtering CONVOL_KERNEL_1: 0.5 FWHM gauss filter CONVOL_KERNEL_2: 0.8 FWHM gauss filter CONVOL_KERNEL_3 1.0 FWHM gauss filter 1.0 FWHM gauss filter
SQRT_FILTER_FLAG	SR_COMPRESSION	ROSETTA	Label vector	The OSIRIS flight software gives the option of transforming the images using the equation: TM Filtered DN = sqrt(image DN * gain) This flag indicating if the sqrt filter has been applied by the flight software Possible Values: TRUE FALSE FALSE

SQRT_GAIN	SR_COMPRESSION	ROSETTA	Float vector	If SQRT_FILTER_FLAG is TRUE then SQRT_GAIN TM contains the gain factor used by the filter. (see	М
				SQR1_FILTER_FLAG)	

8.14 Hardware Identification Group

Label	Group	Namespace	Datatype	Unit	Description	Source
DATA_PROCESSING_UNIT_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the data processing unit EM QM FM FS	ТМ
POWER_CONVERTER_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the main power converter EM QM FM FS	TM
MOTOR_CONTROLLER_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the motor controller unit EM QM FM FS	ТМ
NAC_CCD_READOUT_BOX_ID	SR_HARDWARE_CONFIG	ROSETTA	Label		Hardware ID of the NAC CCD Readout Box (CRB) EM QM FM FS	TM

WAC_CCD_READOUT_BOX_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the WAC CCD Readout Box (CRB) EM QM FM FS	ТМ
NAC_CAMERA_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the NAC Camera/Focal plane hardware EM QM FM FS	ТМ
WAC_CAMERA_ID	SR_HARDWARE_CONFIG	ROSETTA	Label	Hardware ID of the WAC Camera/Focal plane hardware EM QM FM FS	ТМ

8.15 Operation Heater Group

Label	Group	Namespace	Datatype	Unit	Description	Source
CCD_HEATER_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the CCD operation heater	TM
NAC_MAIN_FDM_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main NAC front door operational heater	TM
NAC_RED_FDM_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant NAC front door operational heater	TM

NAC_MAIN_PPE_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main PPE structure operational heater.	TM
NAC_RED_PPE_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant PPE structure operational heater.	TM
WAC_MAIN_STR1_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main WAC structure #1 operational heater	TM
WAC_RED_STR1_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant WAC structure #1 operational heater	TM
WAC_MAIN_STR2_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the main WAC structure #2 operational heater	TM
WAC_RED_STR2_POWER	SR_HEATER_STATUS	ROSETTA	Float	W	Power used by the redundant WAC structure #2 operational heater	TM

8.16 Power Switch Group

Contains the state of the various power switches inside OSIRIS.

Label	Group	Namespace	Datatype	Unit	Description	Source
WAC_SHUTFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Is the WAC shutter failsafe execution switch switched on? ON OFF	ТМ
NAC_SHUTFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Is the NAC shutter failsafe execution switch switched on? ON OFF	ТМ
WAC_DOORFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Is the WAC door failsafe execution switch switched on? ON OFF	TM
NAC_DOORFAILSAFEEXEC_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Is the NAC door failsafe execution switch switched on? ON OFF	TM
PCM_PASSCTRLACTIVE_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Is the PCM passive controller switch switched on? ON OFF	ТМ
WAC_SHUTFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label		Is the WAC shutter failsafe enable switch switched on?	TM

				ON OFF	
WAC_SHUTTERPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC shutter electronics switch TN switched on?	ΓM
				ON OFF	
WAC_CCDANNEALHEATER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC CCD annealing heater TN switch switched on?	ГM
				ON OFF	
WAC_CRB_PRIMEPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC primary CRB power switch TM switched on?	ΓM
				ON OFF	
NAC_SHUTFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC shutter failsafe enabling TM switch switched on?	ГМ
				ON OFF	
NAC_SHUTTERPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC shutter electronics power TM switch switched on?	ГМ
				ON OFF	
NAC_CCDANNEALHEATER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC CCD annealing heater TM switch switched on?	ГМ
				ON OFF	
NAC_CRB_PRIMEPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC primary CRB power switch switched on? ON OFF	ТМ
----------------------------	------------------	---------	-------	---	----
WAC_STRUCTUREHEATER_R_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC redundant structure heater switch switched on? ON OFF	TM
WAC_STRUCTUREHEATER_M_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC main structure heater switch switched on? ON OFF	ТМ
WAC_RED_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC redundant calibration lamp switch switched on? ON OFF	ТМ
WAC_MAIN_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC main calibration lamp switch switched on? ON OFF	ТМ
WAC_DOORFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the WAC door failsafe enable switch switched on? ON OFF	TM
NAC_IFPLATEHEATER_R_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC redundant IFP (PPE) heater switch switched on?	TM

				ON OFF
NAC_IFPLATEHEATER_M_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC main IFP (PPE) heater TM switch switched on?
				ON OFF
NAC_RED_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC redundant calibration lamp TM switch switched on?
				ON OFF
NAC_MAIN_CALLAMP_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC main calibration lamp TM switch switched on?
				ON OFF
NAC_DOORFAILSAFE_ENAB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the NAC door failsafe enable switch TM switched on?
				ON OFF
MCB_RED_MOTORPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the redundant MCB motor power TM switch switched on?
				ON OFF
MCB_MAIN_MOTORPOWER_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	Is the main MCB motor power switch TM switched on?
				ON OFF

MCB_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	What is the MCB power mode? The MCB is the motor controller board which is also used to readout all the analog housekeeping channels.Possible values:MAIN:Main MCB active REDUNANT: Redundant MCB active OF:OF:MCB powered OFF	ТМ
PRIMARY_POWER_RAIL_FLAG	SR_SWITCH_STATUS	ROSETTA	Label	What primary power rail has been selected (primary spacecraft power switch) MAIN REDUNDANT	ТМ

8.17 Currents and Voltages Group

Contains current and voltage measurements of the various power rails used by OSIRIS

Label	Group	Namespace	Datatype	Unit	Description	Source
V_28_MAIN	SR_POWER_STATUS	ROSETTA	Float	V	Voltage of the main 28 V power rail	TM
V_28_REDUNDANT	SR_POWER_STATUS	ROSETTA	Float	V	Voltage of the redundant 28 V power rail	TM
V_5	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter 5V rail voltage	TM
V_3	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter 3V rail voltage	TM
V_15	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter 15V rail voltage	TM
V_M15	SR_POWER_STATUS	ROSETTA	Float	V	Main power converter -15V rail voltage	ТМ
V_NAC_REFERENCE	SR_POWER_STATUS	ROSETTA	Float	V	NAC reference voltage	TM
V_WAC_REFERENCE	SR_POWER_STATUS	ROSETTA	Float	V	WAC reference voltage	TM
CAMERA_V_24	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 24V rail voltage	TM
CAMERA_V_8	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 8V rail voltage	ТМ
CAMERA_V_M12	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter -12V rail voltage	TM
CAMERA_V_5_ANALOG	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 5V analog rail voltage	TM
CAMERA_V_5_DIGITAL	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter 5V digital rail voltage	TM
CAMERA_V_M5	SR_POWER_STATUS	ROSETTA	Float	V	Camera CRB power converter -5V rail voltage	TM

I_28_MAIN	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main 28 V power rail	ТМ
I_28_REDUNDANT	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the redundant 28 V power rail	ТМ
I_5	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter 5V rail	ТМ
I_3	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter 3V rail	ТМ
I_15	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter 15V rail	ТМ
I_M15	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the main power converter - 15V rail	TM
CAMERA_I_24	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 24V rail	TM
CAMERA_I_8	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 8V rail	TM
CAMERA_I_M12	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the Camera CRB power converter -12V rail	TM
CAMERA_I_5_ANALOG	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 5V analog rail	ТМ
CAMERA_I_5_DIGITAL	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter 5V digital rail	ТМ
CAMERA_I_M5	SR_POWER_STATUS	ROSETTA	Float	mA	Current measurement of the camera CRB power converter -5V rail	TM

8.18 Temperatures Group

Contains temperature measurements of various parts of the OSIRIS instrument

Label	Group	Namespace	Datatype	Unit	Description	Source
T_MAIN_PCM	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of the Main power converter electronics board	ТМ
T_REDUNDANT_PCM	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	Temperature of the Redundant power converter electronics board	TM
T_WAC_STRUCTURE_MAIN_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	WAC structure temperature sensor #1 (main)	TM
T_WAC_STRUCTURE_REDUNDANT_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #1 (redundant)	ТМ
T_WAC_STRUCTURE_MAIN_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #2 (main)	ТМ
T_WAC_STRUCTURE_REDUNDANT_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC structure temperature sensor #2 (redundant)	ТМ
T_WAC3	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC mirror temperature sensor #3	TM
T_WAC4	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC mirror temperature sensor #4	ТМ
T_WAC_WHEEL_MOTOR_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC filter wheel #1 motor temperature sensor	ТМ
T_WAC_WHEEL_MOTOR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC filter wheel #2 motor temperature sensor	ТМ
T_WAC_DOOR_MOTOR	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC filter front door motor temperature sensor	TM
T_NAC_CCD_VIA_MCB	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC CCD temperature as read By the MCB HK board	ТМ

T_WAC_CCD_VIA_MCB	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	WAC CCD temperature as read By the MCB HK board	ТМ
T_NAC_WHEEL_MOTOR_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC filter wheel #1 motor temperature sensor	ТМ
T_NAC_WHEEL_MOTOR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC filter wheel #2 motor temperature sensor	ТМ
T_NAC_DOOR_MOTOR	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	NAC filter front door motor temperature sensor	ТМ
T_NAC_DOOR_IF_MAIN	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC front door interface plate (main)	ТМ
T_NAC_MIRROR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC M2 mirror	ТМ
T_NAC_PPE_IF_REDUNDANT	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC PPE interface plate (mounting plate for filter wheel, shutter and focal plane) (redundant)	ТМ
T_NAC_DOOR_IF_REDUNDANT	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC front door interface plate (redundant)	TM
T_NAC_PPE_IF_MAIN	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	Temperature of NAC PPE interface plate (mounting plate for filter wheel, shutter and focal plane) (main)	ТМ
T_NAC_MIRROR_1_AND_3	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of NAC M1 and M3 mirror mounting plate	ТМ
T_DSP_MAIN	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of main DSP (processing unit)	TM
T_DSP_REDUNDANT	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of redundant DSP (processing unit)	TM

T_BOARD_CONTROLLER	SR_TEMPERATURE_STATUS	ROSETTA	Float	К	Temperature of motor controller controller board	TM
T_BOARD_DRIVER	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of motor controller driver state	
CAMERA_TCCD	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	CCD Temperature as read out by the CRB electronics	TM
CAMERA_T_SENSORHEAD	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of the CCD sensor head electronics board	ТМ
CAMERA_T_ADC_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of ADC #1	ТМ
CAMERA_T_ADC_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of ADC #2	TM
CAMERA_T_SHUTTER_MOTOR_1	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of shutter motor #1	TM
CAMERA_T_SHUTTER_MOTOR_2	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of shutter motor #2	ТМ
CAMERA_T_POWER_CONVERTER	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of CRB electronics power converter module	ТМ
CAMERA_T_DOSIMETER	SR_TEMPERATURE_STATUS	ROSETTA	Float	K	Temperature of dosimeter	TM

8.19 Radiation Environment Group

Label	Group	Namespace	Datatype	Unit	Description	Source
CAMERA_DOSIS	SR_RADIATION_STATUS	ROSETTA	Float	rad	Total radiation dosis measured by the	TM
					radiation MOSFET	
SREM_PROTONS_GT_20MEV	SR_RADIATION_STATUS	ROSETTA	Float	DN	SREM dosis of >20MeV protons	TM
SREM_PROTONS_50_TO_70MEV	SR_RADIATION_STATUS	ROSETTA	Float	DN	SREM dosis of 50-70 MeV protons	TM
SREM_ELECTRONS_LT_2MEV	SR_RADIATION_STATUS	ROSETTA	Float	DN	SREM dosi of $< 2 \text{ MeV}$ electrons	TM

9 PDS Objects

9.1 The HISTORY Object

The HISTORY object is an attached secondary PDS label with additional information about the processing history if the image. The history object data can be extracted from the PDS label via the 'HISTORY pointer specifying the offset of the history label. The history label is terminated using an END statement (same as a normal PDS label). The history object contains a single object called HISTORY with a varying number of sub fields defined by the various processing steps. For detailed information about the meaning of the various history fields please see the processing software source code.

A typical history object could look like:

OBJECT	= HISTORY
$/\star$ Information about the CODMAC level 1	. to COSMAC level 2 processing pipeline */
GROUP	= TMI2PDS
TIME	= "2009-05-12T12:28:59.921Z"
INPUT_FILE	= "\\osi-storage\archive\data\spacecraft\pfm\flight*"
OUTPUT_FILE	= "\\osi-storage\archive\uplink"
OUTPUT_DIR	= "c:\temp\pds_work"
PDS_DB	= "\\osi-storage\archive_admin\Database\ArchivingDatabase"
SPICE_DB	= "\\osi-storage\archive\Database\Kernels"
UPLINK_DB	= "\\osi-storage\archive\uplink"
REPROCESS	= FALSE
DETECT_FDM_STATE	= FALSE
FORCE_TARGET_UNKNOWN	= TRUE
CORRECT_FILENAME	= TRUE
RECURSIVE	= FALSE
USE_ADS	= TRUE
BUILDING	= PDS_ARCHIVE
BUILD_JPEG	= FALSE
BUILD_THUMBNAILS	= FALSE
CODMAC	= TRUE
IMPORT_RIS_ARCHIVE	= TRUE
USE_REVISION_CONTROL	= FALSE
USE_SHORT_FILENAME	= TRUE
SKIP_SHM_ERRORS	= TRUE

RESTRICT TO MISSION PHASE	= AST1
USING INSTRUMENT ID	= "OSINAC"
USING INSTRUMENT NAME	= "OSIRIS - NARROW ANGLE CAMERA"
END GROUP	= TMI2PDS
OBJECT	= LEVEL2 PIPELINE
ADC OFFSET CORRECTION FLAG	= TRUE
ADC OFFSET CORRECTION VERSION	= "V1.1"
COHERENT NOISE CORRECTION FLAG	= TRUE
COHERENT NOISE CORRECTION VERSIO	N = "V1.0"
FRAME SEPERATOR VERSION	= "V1.0"
BIAS LEVEL	= 232.195
BIAS CORRECTION FLAG	= TRUE
BIAS CORRECTION VERSION	= "V2.1"
POISSON NOISE VERSION	= "1.0"
MK QUALITY MAP VERSION	= "1.0"
EXPOSURETIME CORRECTION FLAG	= TRUE
EXPOSURETIME CORRECTION VERSION	= "V1.2"
DARK CURRENT CORRECTION FLAG	= TRUE
DARK CURRENT CORRECTION VERSION	= "V1.2"
BAD PIXEL REPLACEMENT FLAG	= TRUE
BAD PIXEL REPLACEMENT VERSION	= "V1.0"
FLATFIELD CORRECTION FLAG	= TRUE
FLATFIELD CORRECTION VERSION	= "V1.1"
ABSCAL FACTOR	= 1.20000e+008
ABSOLUTE CALIBRATION FLAG	= TRUE
ABSOLUTE CALIBRATION VERSION	= "V1.0"
CALIBRATION DATAFILES	= ("NAC FM ADC V1 27062005.TXT", "NAC FM BIAS V5 20080905.txt",
"NAC FM Dark V3 16072005.img",	"NAC FM BPIX V1 01072005.txt", "NAC FM FLAT-22 V1 28062005.img",
"NAC FM AbsCal V2 02122005.txt")	
PIPELINE_MASTER_VERSION	= "1.4"
END_OBJECT	= LEVEL2_PIPELINE
ND GROUP	= HISTORY
ND	

9.2 Shutter Blade 1 position encoder Object

Embedded binary object containing the position encoder pulse data for the shutter blade #1. The data is reached using the data pointer ^BLADE1_PULSE_ARRAY. Note this object only exists in the PDS header if shutter pulse data for blade 1 has been downlinked. The BLADE1_PULSE_ARRAY object only exists in the EDR label.

Label	Object	Datatype	Description
NAME	BLADE1_PULSE_ARRAY	String	Short description of the object
DESCRIPTION	BLADE1_PULSE_ARRAY	String	Description of the object
INTERCHANGE_FORMAT	BLADE1_PULSE_ARRAY	Label	Interchange format
			Always: BINARY
AXES	BLADE1_PULSE_ARRAY	Integer	Number of data axes (always 1)
AXIS_ITEMS	BLADE1_PULSE_ARRAY	Integer	Number of data elements in array
NAME	BLADE1_PULSE_ARRAY.ELEMENT	Label	Name of single data elements (Always "COUNT")
DATA_TYPE	BLADE1_PULSE_ARRAY.ELEMENT	Label	Datatype of shutter pulse data array (Always LSB_UNSIGNED_INTEGER)
BYTES	BLADE1_PULSE_ARRAY.ELEMENT	Integer	Number of bytes per pulse sample (Always 4)

9.3 Shutter Blade 2 position encoder Object

Embedded binary object containing the position encoder pulse data for the shutter blade #2. The data is reached using the data pointer ^BLADE2_PULSE_ARRAY. Note this object only exists in the PDS header if shutter pulse data for blade 1 has been downlinked. The BLADE1_PULSE_ARRAY object only exists in the EDR label.

Label	Object	Datatype	Description
NAME	BLADE2_PULSE_ARRAY	String	Short description of the object
DESCRIPTION	BLADE2_PULSE_ARRAY	String	Description of the object
INTERCHANGE_FORMAT	BLADE2_PULSE_ARRAY	Label	Interchange format Always: BINARY
AXES	BLADE2_PULSE_ARRAY	Integer	Number of data axes (always 1)
AXIS_ITEMS	BLADE2_PULSE_ARRAY	Integer	Number of data elements in array
NAME	BLADE2_PULSE_ARRAY.ELEMENT	Label	Name of single data elements (Always "COUNT")
DATA_TYPE	BLADE2_PULSE_ARRAY.ELEMENT	Label	Datatype of shutter pulse data array (Always LSB_UNSIGNED_INTEGER)
BYTES	BLADE2_PULSE_ARRAY.ELEMENT	Integer	Number of bytes per pulse sample (Always 4)

9.4 The IMAGE Object

(required object)

The image object contains the image data from the physical CCD surface (the actual image acquired during the exposure)

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label	The interchange format of the image data
			Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels
LINES	IMAGE	Integer	Height of the image in pixels
BANDS	IMAGE	Integer	Number of image planes
			Always 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type
			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel
			Normally: 16 for level 1 data
SAMPLE_BIT_MASK	IMAGE	Bin Integer	Bitmask indicating significant bits
UNIT	IMAGE	String	Data unit of the image data
			Level2: DN Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$
DERIVED_MINIMUM	IMAGE	Integer/Float	Minimum data value in image
DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image

MEAN	IMAGE	Integer/Float	Mean data value of image data
FIRST_LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.

9.5 The PA_IMAGE Object

(optional object)

The OSIRIS CCD has an operation mode where the CCD first clocks out 48 pixels connected to ground before actually clocking out the real image data (the pre pixels). The pre pixels can be acquired from both the A and B amplifier chains. If data was acquired from the A amplifier chain the pre pixel image data will be found in the PA_IMAGE object.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label	The interchange format of the image data
			Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels
LINEC	DAACE	Intern	II. i. i. a falle incere in winds
LINES	IMAGE	Integer	Height of the image in pixels
DANDS	IMACE	Interen	Number of image r lange
DANDS	IMAGE	Integer	Number of mage planes
			Always 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type
			Normally: LSB_UNSIGNED_INTEGER for level 1 data

SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel
			Normally: 16 for level 1 data
	D () CE	D' L	
SAMPLE_BIT_MASK	IMAGE	Bin Integer	Bitmask indicating significant bits
UNIT	IMAGE	String	Data unit of the image data
UNIT	INIAOL	String	Level? DN
			Level $2 = N$ Wm ⁻² sr ⁻¹ nm ⁻¹
DERIVED MINIMUM	IMAGE	Integer/Float	Minimum data value in image
	_		
DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image
MEAN	IMAGE	Integer/Float	Mean data value of image data
FIRST_LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.
FIRST LINE SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates
	IMINOL	integer	
			Please not that this value is 1 indexed! Not 0 indexed.

9.6 The PB_MAGE Object

(optional object)

The OSIRIS CCD has an operation mode where the CCD first clocks out 48 pixels connected to ground before actually clocking out the real image data (the pre pixels). The pre pixels can be acquired from both the A and B amplifier chains. If data was acquired from the B amplifier chain the pre pixel image data will be found in the PB_IMAGE object.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label	The interchange format of the image data

			Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels
LINES	IMAGE	Integer	Height of the image in pixels
BANDS	IMAGE	Integer	Number of image planes
			Always 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type
			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel
			Normally: 16 for level 1 data
SAMPLE_BIT_MASK	IMAGE	Bin Integer	Bitmask indicating significant bits
UNIT	IMAGE	String	Data unit of the image data
			Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$
DERIVED_MINIMUM	IMAGE	Integer/Float	Minimum data value in image
DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image
MEAN	IMAGE	Integer/Float	Mean data value of image data
FIRST_LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.

9.7 The OL_MAGE Object

(optional object)

The OSIRIS CCD has an operation mode where the CCD keep clocking lines after the last physical CCD line has been read. This allows calibration of the charge transfer efficiency in the vertical clocking direction. If data was acquired using this mode then the image data will be found in the OL_IMAGE object.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label	The interchange format of the image data
			Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels
LINES	IMAGE	Integer	Height of the image in pixels
BANDS	IMAGE	Integer	Number of image planes
			Always 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type
			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel
			Normally: 16 for level 1 data
SAMPLE_BIT_MASK	IMAGE	Bin Integer	Bitmask indicating significant bits
UNIT	IMAGE	String	Data unit of the image data
			Level2: DN Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$
DERIVED_MINIMUM	IMAGE	Integer/Float	Minimum data value in image

DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image
MEAN	IMAGE	Integer/Float	Mean data value of image data
		integer, i to ut	
FIRST_LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.

9.8 The SIGMA_MAP_IMAGE Object

(required for CODMAC level 3 and higher)

RDR data records with calibrated image data contains an additional image object called the sigma map image. The sigma map image contains an error estimate in % for each pixel in the image data. The error estimate currently just contains the Poisson error.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label	The interchange format of the image data
			Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels
LINES	IMAGE	Integer	Height of the image in pixels
BANDS	IMAGE	Integer	Number of image planes
			Always 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type

			Normally: LSB_UNSIGNED_INTEGER for level 1 data
SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel
			Normally: 16 for level 1 data
SAMPLE_BIT_MASK	IMAGE	Bin Integer	Bitmask indicating significant bits
UNIT	IMAGE	String	Data unit of the image data
			Level2: DN
			Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$
DERIVED_MINIMUM	IMAGE	Integer/Float	Minimum data value in image
DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image
MEAN	IMAGE	Integer/Float	Mean data value of image data
FIRST_LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.
FIRST_LINE_SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.

9.9 The QUALITY_MAP_IMAGE Object

(required for CODMAC level 3 and higher)

An RDR data record with calibrated image data contains an additional image object called the quality map image. The quality map image contains a quality estimate for each pixel in the image.

The QUALITY_MAP_IMAGE is an 8-bit image with the same dimension as the image itself and contains a quality estimate of each pixel. The quality map exists for data level 3 and higher. The quality estimate values stored in the quality map are generated by setting a given bit to value 1 for specific effects. If more effect is present in the data several different bits can be set.

The following value a possible:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	128	64	32	16	8	4	2	1
Effect	BAD	SAT	DIM	WARM	LOSSY	NLIN	CONV	SQRT

BAD: Pixel is marked as bad (garbage data!)

SAT: Pixel was saturated during the exposure (garbage data!)

DIM: Pixel is marked as dim (low sensitivity – probably garbage data!)

WARM: Pixel is marked as warm (increased and slightly varying ensitivity) – use with caution

LOSSY: Pixel has seen lossy image compression

NLIN: Pixel was expososed into the non linear DN range of the CCD

CONV: Pixel has seen gauss convolution filtering as part of the image compression

SQRT: Pixel has seen sqrt filtering as part of the image compression

The general rule for the quality map is that low absolute values means good data and high absolute values mean suspect data.

Label	Object	Datatype	Description
INTERCHANGE_FORMAT	IMAGE	Label The interchange format of the image data	
			Always: BINARY
LINE_SAMPLES	IMAGE	Integer	Width of the image in pixels
LINES	IMAGE	Integer	Height of the image in pixels
BANDS	IMAGE	Integer	Number of image planes
			Always 1
SAMPLE_TYPE	IMAGE	Label	The binary storage data type
			Normally: LSB_UNSIGNED_INTEGER for level 1 data

SAMPLE_BITS	IMAGE	Integer	Number of bits per pixel
			Normally: 16 for level 1 data
	DUAGE	D' I /	
SAMPLE_BIT_MASK	IMAGE	Bin Integer	Bitmask indicating significant bits
UNIT	IMAGE	String	Data unit of the image data
	INIAOL	String	Level2. DN
			Level3 – N: $Wm^{-2}sr^{-1}nm^{-1}$
DERIVED_MINIMUM	IMAGE	Integer/Float	Minimum data value in image
DERIVED_MAXIMUM	IMAGE	Integer/Float	Maximum data value in image
MEAN	IMAGE	Integer/Float	Mean data value of image data
		-	
FIRST_LINE	IMAGE	Integer	First row of subframe in OPTICAL CCD coordinates
			Place not that this value is 1 indexed! Not 0 indexed
			r lease not that this value is 1 indexed. Not 0 indexed.
FIRST LINE SAMPLE	IMAGE	Integer	First column of subframe in OPTICAL CCD coordinates
			Please not that this value is 1 indexed! Not 0 indexed.

Appendix 1 – Example OSIRIS Label

PDS VERSION ID	= PDS3
LABEL_REVISION_NOTE	= "V5.2 Dec 2 2010 SFH"

/* FILE CHARACTERISTICS */

RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS FILE_NAME PROCESSING_HISTORY_TEXT /* POINTERS TO DATA OBJECTS */	<pre>= FIXED_LENGTH = 512 = 4150 = 41 = "W20100710T154116488ID20F71.IMG" = "Level 1 PDS file created - tmi2pds 2010-12-02"</pre>
^HISTORY ^IMAGE ^BLADE1_PULSE_ARRAY ^BLADE2_PULSE_ARRAY	= 42 = 55 = 47 = 51
/* SOFTWARE */	
SOFTWARE_DESC SOFTWARE_NAME SOFTWARE_VERSION_ID SOFTWARE_RELEASE_DATE	<pre>= "Osiris level 1 PDS file generator" = "tmi2pds.exe" = "V3.0.0.10" = 2010-12-02</pre>
/* MISSION IDENTIFICATION */	
INSTRUMENT_HOST_ID INSTRUMENT_HOST_NAME MISSION ID	<pre>= "RO" = "ROSETTA-ORBITER" = "ROSETTA"</pre>

MISSION_ID _____ MISSION_NAME MISSION_PHASE_NAME = "LUTETIA FLY-BY"

- = "INTERNATIONAL ROSETTA MISSION"

96

97

IMAGE ID IMAGE OBSERVATION TYPE EXPOSURE TYPE PRODUCT ID PRODUCT TYPE PRODUCT_VERSION_ID PRODUCER_FULL_NAME PRODUCER_ID PRODUCER ID DATA QUALITY ID

- = "1" PRODUCER_INSTITUTION_NAME = "Max Planck Institute for Solar System Research" = "STUBBE F. HVIID" = "MPS" INCODUCTINGINCOMEDIUM_TYPE= "ELECTRONIC"PUBLICATION_DATE= 2010-12-02DATA_SET_ID= "RO-A-OSIWAC-2-AST2-LUTETIA_FLY-BY-V1.0"DATA_SET_NAME= "ROSETTA-ORBITER LUTETIA FLY-BY OSIWAC 2 EDR data"PROCESSING_LEVEL_ID= "2"PROCESSING_LEVEL_DESC= "Raw image data with calibrated header information"
- = EDR

= "0"

- = "W20100710T154116488ID20F71"
- = "REGULAR" = "MANUAL"

= 0.132000 <m>

- = "281129003"
- /* IMAGE IDENTIFICATION */

INSTRUMENT ID INSTRUMENT NAME INSTRUMENT TYPE DETECTOR DESC DETECTOR_PIXEL_WIDTH= 13.500000 <MICRON>DETECTOR_PIXEL_HEIGHT= 13.500000 <MICRON>DETECTOR_TYPE= "SI CCD" DETECTOR ID DETECTOR_ID= "EEV-242"DETECTOR_TEMPERATURE= 173.506946 <K>ELEVATION_FOV= 12.000000 <DEGREES>AZIMUTH_FOV= 12.100000 <DEGREES>TELESCOPE_RESOLUTION= 0.000101 <RAD>TELESCOPE_F_NUMBER= 5.600000 TELESCOPE_FOCAL_LENGTH

- = "OSIRIS WIDE ANGLE CAMERA" = "FRAME CCD REFLECTING TELESCOPE" = "2048x2048 PIXELS BACKLIT FRAME CCD DETECTOR"
- /* INSTRUMENT DESCRIPTION */

= "EEV-242"

- - = "OSIWAC"

DATA QUALITY DESC

/* TIME IDENTIFICATION */

```
      PRODUCT_CREATION_TIME
      = 2010-12-02T10:49:10.570

      START_TIME
      = 2010-07-10T15:41:35.447

      STOP_TIME
      = 2010-07-10T15:41:37.867

      SPACECRAFT_CLOCK_START_COUNT
      = "1/237397254:31984"

      SPACECRAFT_CLOCK_STOP_COUNT
      = "1/237397254:35984"
```

/* GEOMETRY */

/*

The values of the keywords SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR and SC_TARGET_VELOCITY_VECTOR are related to the Earth Mean Equator J2000 reference frame.

The values of SUB_SPACECRAFT_LATITUDE and SUB_SPACECRAFT_LONGITUDE are northern latitude and eastern longitude in the standard planetocentric IAU <TARGET NAME> frame.

```
All values are computed for the time t= START_TIME.
```

Distances are given in <km> velocities in <km/s>, Angles in <deg>.

*/

SC SUN POSITION VECTOR	= (401053125.269162 <km>, 68120031.651990 <km>, 7034033.981704 <km>)</km></km></km>
SPACECRAFT SOLAR DISTANCE	= 406857991.975685 <km></km>
SOLAR_ELONGATION	= 144.121598 <deg></deg>
RIGHT_ASCENSION	= 225.011181 <deg></deg>
DECLINATION	= -7.698864 <deg></deg>
NORTH AZIMUTH	= 12.145057 <deg></deg>
TARGET NAME	= "21 LUTETIA"
TARGET_TYPE	= "ASTEROID"
TARGET LIST	= ()
LIGHT SOURCE PHASE ANGLE	= 35.555844 <deg></deg>
SC TARGET POSITION VECTOR	= (-3068.723366 <km>, -3035.282570 <km>, -581.238849 <km>)</km></km></km>
SC TARGET VELOCITY VECTOR	= (14.986834 <km s="">, -0.313231 <km s="">, -0.386874 <km s="">)</km></km></km>
TARGET CENTER DISTANCE	= 4355.208603 <km></km>
SUB SPACECRAFT LATITUDE	= NULL
SUB SPACECRAFT LONGITUDE	= NULL

SPACECRAFT ALTITUDE

= 4308.090810 <km>

/* COORDINATE SYSTEMS */

GROUP = SC COORDINATE SYSTEM = "S/C-COORDS" COORDINATE SYSTEM NAME ORIGIN OFFSET VECTOR = (-401036033.706764 <km>, -68117127.862892 <km>, -7033733.851129 <km>) ORIGIN ROTATION QUATERNION = (0.300457, 0.585442, -0.716851, 0.230450) QUATERNION DESC = "J2000 to Rosetta Coordinate System quaternion [nx sin(a/2), ny sin(a/2), nz sin(a/2), cos(a/2)]" REFERENCE COORD SYSTEM NAME = "EME J2000" = SC COORDINATE SYSTEM END GROUP GROUP = CAMERA COORDINATE SYSTEM COORDINATE_SYSTEM_NAME = "WAC CAMERA FRAME" = (-0.001050 <km>, 0.000232 <km>, 0.002114 <km>) ORIGIN OFFSET VECTOR = (-0.707101, 0.707105, -0.002821, -0.001714) ORIGIN ROTATION QUATERNION = "Rosetta Coordinate System to camera coordinate system quaternion [nx sin(a/2)], QUATERNION DESC ny sin(a/2), nz sin(a/2), cos(a/2)]" REFERENCE COORD SYSTEM NAME = "S/C-COORDS" END GROUP = CAMERA COORDINATE SYSTEM "ROS 101110 STEP.TSC", "ATNR P040302093352 00114.BC", SPICE FILE NAME = ("NAIF0009.TLS", 00109.BSP", "PCK00009.TPC", "ROS V17.TF", "ORHR "mar033 2000-2025.bsp", "2867 STEINS 2004 2016.BSP", "DE405.BSP", "21 LUTETIA 2004 2016.BSP", "Tempel1-9p-39.bsp", "ORHO 00077.BSP", "ORHS 00109.BSP", "ORHW 00016.BSP", "C2001Q4.bsp", "C2002T7.bsp", "TEMPEL1-9P-DI-P.BSP", "P2010A2.bsp", "Vesta-2004-2015.bsp", "C2004Q2.bsp") /* DISPLAY INFORMATION */ SAMPLE DISPLAY DIRECTION = RIGHT LINE DISPLAY DIRECTION = DOWN

/* STATUS FLAGS */

ROSETTA: FRAMETRANSFER ENABLED FLAG = FALSE ROSETTA:WINDOWING ENABLED FLAG = TRUE ROSETTA: SHUTTER ENABLED FLAG = TRUE ROSETTA: DITHERING ENABLED FLAG = FALSE ROSETTA:CRB_DUMP_MODE = 0 = 0 ROSETTA:CRB PULSE MODE ROSETTA: SUBFRAME COORDINATE ID = ELECTRICAL NOTE = "Do not use X START, X END, Y START, Y END for subframe determination" ROSETTA:X_START = 496 ROSETTA:X END = 1520ROSETTA:Y START = 432 ROSETTA:Y END = 1456 ROSETTA: SHUTTER_PRETRIGGER_DURATION = 0.065000 <s> POSETTA: CRB TO PCM SYNC MODE = 17 ROSETTA: AUTOEXPOSURE FLAG = FALSE ROSETTA:LOWPOWER MODE FLAG = FALSE ROSETTA: DUAL_EXPOSURE_FLAG = FALSE END_GROUP = SR ACQUIRE _OPTIONS /* SHUTTER CONFIG */ GROUP = SR SHUTTER CONFIG = "4294967295" ROSETTA: PROFILE ID = 16#3a# ROSETTA:CONTROL MASK ROSETTA: TESTMODE FLAG = TRUE ROSETTA:ZEROPULSE FLAG = TRUE END_GROUP = SR SHUTTER CONFIG /* SHUTTER STATUS */ GROUP = SR SHUTTER STATUS = 16#6000600#ROSETTA:STATUS MASK ROSETTA:ERROR TYPE ID = NONE ROSETTA:BLADE1 FIT SLOPE = NULL ROSETTA:BLADE1 FIT OFFSET = NULL ROSETTA:BLADE1 FIT STDDEV = NULL

ROSETTA:BLADE1_FIT_START	= NULL
ROSETTA:BLADE2_FIT_SLOPE	= NULL
ROSETTA:BLADE2_FIT_OFFSET	= NULL
ROSETTA:BLADE2_FIT_STDDEV	= NULL
ROSETTA:BLADE2_FIT_START	= NULL
END_GROUP	= SR_SHUTTER_STATUS

/* DATA COMPRESSION AND SEGMENTATION */

GROUP

GROUP	= SR COMPRESSION	
ROSETTA:SEGMENT_X	= (0, 512, 0, 512)	
ROSETTA:SEGMENT_Y	= (0, 0, 512, 512)	
ROSETTA:SEGMENT_W	= (512, 512, 512, 512)	
ROSETTA:SEGMENT_H	= (512, 512, 512, 512)	
ROSETTA: ENCODING	= (NONE, NONE, NONE, NONE)	
ROSETTA:COMPRESSION_RATIO	= (1.000000, 1.000000, 1.000000, 1.000000)	
ROSETTA:LOSSLESS_FLAG	= (TRUE, TRUE, TRUE, TRUE)	
ROSETTA:SPIHT_PYRAMID_LEVELS	= (4294967293, 4294967293, 4294967293, 4294967293)	
ROSETTA:SPIHT_MEAN	= (4294967293, 4294967293, 4294967293, 4294967293)	
ROSETTA:SPIHT_MEAN_SHIFT	= (4294967293, 4294967293, 4294967293, 4294967293)	
ROSETTA:SPIHT_WAVE_LEVELS	= (4294967293, 4294967293, 4294967293, 4294967293)	
PIXEL_AVERAGING_WIDTH	= (1, 1, 1, 1)	
PIXEL_AVERAGING_HEIGHT	= (1, 1, 1, 1)	
ROSETTA:SMOOTH_FILTER_ID	= (NONE, NONE, NONE, NONE)	
ROSETTA:SQRT_FILTER_FLAG	= (FALSE, FALSE, FALSE, FALSE)	
END_GROUP	= SR_COMPRESSION	

/* SUBSYSTEM HARDWARE IDENTIFICATION */

GROUP

= SR_HARDWARE_CONFIG

ROSETTA:DATA_PROCESSING_UNIT_ID	= FS
ROSETTA: POWER CONVERTER ID	= FS
ROSETTA:MOTOR_CONTROLLER_ID	= FS
ROSETTA:NAC_CCD_READOUT_BOX_ID	= FM
ROSETTA:WAC_CCD_READOUT_BOX_ID	= FM
ROSETTA:NAC_CAMERA_ID	= FM

ROSETTA:WAC_CAMERA_ID END_GROUP = FM = SR_HARDWARE_CONFIG

/* SYSTEM HEATER STATUS */

GROUP	= SR HEATER STATUS
ROSETTA:CCD_HEATER_POWER	= 0.000000 <w></w>
ROSETTA:NAC_MAIN_FDM_POWER	= 3.988600 <w></w>
ROSETTA:NAC_RED_FDM_POWER	= 0.000000 <w></w>
ROSETTA:NAC_MAIN_PPE_POWER	= 1.709400 <w></w>
ROSETTA:NAC_RED_PPE_POWER	= 0.000000 <w></w>
ROSETTA:WAC_MAIN_STR1_POWER	= 1.758240 <w></w>
ROSETTA:WAC_RED_STR1_POWER	= 0.000000 <w></w>
ROSETTA:WAC_MAIN_STR2_POWER	= 3.125760 <w></w>
ROSETTA:WAC_RED_STR2_POWER	= 0.000000 <w></w>
END_GROUP	= SR_HEATER_STATUS

/* POWER CONVERTER SWITCH STATUS */

GROUP

= SR_SWITCH_STATUS

ROSETTA:WAC_SHUTFAILSAFEEXEC_FLAG	= OFF
ROSETTA:NAC_SHUTFAILSAFEEXEC_FLAG	= OFF
ROSETTA:WAC_DOORFAILSAFEEXEC_FLAG	= OFF
ROSETTA:NAC_DOORFAILSAFEEXEC_FLAG	= OFF
ROSETTA:PCM_PASSCTRLACTIVE_FLAG	= OFF
ROSETTA:WAC_SHUTFAILSAFE_ENAB_FLAG	= OFF
ROSETTA:WAC_SHUTTERPOWER_FLAG	= ON
ROSETTA:WAC_CCDANNEALHEATER_FLAG	= OFF
ROSETTA:WAC_CRB_PRIMEPOWER_FLAG	= ON
ROSETTA:NAC_SHUTFAILSAFE_ENAB_FLAG	= OFF
ROSETTA:NAC_SHUTTERPOWER_FLAG	= ON
ROSETTA:NAC_CCDANNEALHEATER_FLAG	= OFF
ROSETTA:NAC_CRB_PRIMEPOWER_FLAG	= ON
ROSETTA:WAC_STRUCTUREHEATER_R_FLAG	= OFF
ROSETTA:WAC_STRUCTUREHEATER_M_FLAG	= OFF
ROSETTA:WAC_RED_CALLAMP_FLAG	= OFF

ROSETTA:WAC MAIN CALLAMP FLAG	= OFF
ROSETTA:WAC DOORFAILSAFE ENAB FLAG	= OFF
ROSETTA:NAC IFPLATEHEATER R FLAG	= OFF
ROSETTA:NAC IFPLATEHEATER M FLAG	= OFF
ROSETTA:NAC_RED_CALLAMP_FLAG	= OFF
ROSETTA:NAC MAIN CALLAMP FLAG	= OFF
ROSETTA:NAC DOORFAILSAFE ENAB FLAG	= OFF
ROSETTA:MCB RED MOTORPOWER FLAG	= OFF
ROSETTA:MCB MAIN MOTORPOWER FLAG	= ON
ROSETTA:MCB FLAG	= MAIN
ROSETTA:PRIMARY POWER RAIL FLAG	= MAIN
END_GROUP = SR_SI	WITCH_STATUS
/* POWER SYSTEM STATUS */	
,	
GROUP = SR_PO	OWER_STATUS
ROSETTA:V_28_MAIN	= 28.445000 <v></v>
ROSETTA:V_28_REDUNDANT	= 3.290000 <v></v>
ROSETTA:V_5	= 5.220000 <v></v>
ROSETTA:V_3	= 3.420000 <v></v>
ROSETTA:V_15	= 14.960000 <v></v>
ROSETTA:V_M15	= -14.960000 < V >
ROSETTA:V_NAC_REFERENCE	= -9.892000 <v></v>
ROSETTA:V_WAC_REFERENCE	= -9.956000 <v></v>
ROSETTA:CAMERA_V_24	= 25.403917 <v></v>
ROSETTA:CAMERA_V_8	= 8.385758 <v></v>
ROSETTA:CAMERA_V_M12	= -12.380590 <v></v>
ROSETTA:CAMERA_V_5_ANALOG	= 5.367149 <v></v>
ROSETTA:CAMERA_V_5_DIGITAL	= 5.274897 <v></v>
rosetta:camera_v_m5	= -5.333306 <v></v>
ROSETTA:I_28_MAIN	= 1842.280000 <ma></ma>
ROSETTA:I_28_REDUNDANT	= 0.000000 <ma></ma>
ROSETTA:I_5	= 2058.680000 <ma></ma>
ROSETTA:I_3	= 135.670000 <ma></ma>
ROSETTA:I ¹⁵	= 48.380000 <ma></ma>
ROSETTA:I_M15	= 41.170000 <ma></ma>

ROSETTA:CAMERA_I_24	= 14.658805 <ma></ma>
ROSETTA:CAMERA I 8	= 12.273659 <ma></ma>
ROSETTA:CAMERA I M12	= 71.962013 <ma></ma>
ROSETTA:CAMERA I 5 ANALOG	= 102.924325 <ma></ma>
ROSETTA:CAMERA_I_5_DIGITAL	= 122.486374 <ma></ma>
ROSETTA:CAMERA I M5	= 64.224957 <ma></ma>
END_GROUP	= SR_POWER_STATUS

/* TEMPERATURE STATUS */

GROUP

ROUP	= SR_TEMPERATURE_STATUS
ROSETTA:T_MAIN_PCM	= 299.343000 <k></k>
ROSETTA:T_REDUNDANT_PCM	= 294.951000 <k></k>
ROSETTA:T_WAC_STRUCTURE_MAIN_1	= 284.933454 <k></k>
ROSETTA:T_WAC_STRUCTURE_REDUNDA	$ANT_1 = 285.695172 < K >$
ROSETTA:T_WAC_STRUCTURE_MAIN_2	= 285.187360 <k></k>
ROSETTA:T_WAC_STRUCTURE_REDUNDA	$ANT_2 = 285.441266 < K >$
ROSETTA:T_WAC3	= 288.488138 <k></k>
ROSETTA:T_WAC4	= 286.202984 <k></k>
ROSETTA:T_WAC_WHEEL_MOTOR_1	= 283.156112 <k></k>
ROSETTA:T_WAC_WHEEL_MOTOR_2	= 284.933454 <k></k>
ROSETTA:T_WAC_DOOR_MOTOR	= 281.378770 <k></k>
ROSETTA:T_NAC_CCD_VIA_MCB	= 202.414004 <k></k>
ROSETTA:T_WAC_CCD_VIA_MCB	= 178.800746 <k></k>
ROSETTA:T_NAC_WHEEL_MOTOR_1	= 255.480358 <k></k>
ROSETTA:T_NAC_WHEEL_MOTOR_2	= 256.242076 <k></k>
ROSETTA:T_NAC_DOOR_MOTOR	= 252.433486 <k></k>
ROSETTA:T_NAC_DOOR_IF_MAIN	= 247.863178 <k></k>
ROSETTA:T_NAC_MIRROR_2	= 222.980390 <k></k>
ROSETTA:T_NAC_PPE_IF_REDUNDANT	= 255.226452 <k></k>
ROSETTA:T_NAC_DOOR_IF_REDUNDAN	= 247.863178 <k></k>
ROSETTA:T_NAC_PPE_IF_MAIN	= 255.226452 <k></k>
ROSETTA:T_NAC_MIRROR_1_AND_3	= 222.218672 <k></k>
ROSETTA:T_DSP_MAIN	= 305.753746 <k></k>
ROSETTA:T DSP REDUNDANT	= 295.597506 <k></k>
ROSETTA: T_BOARD_CONTROLLER	= 299.406096 <k></k>

= 297.374848 <K> ROSETTA: T BOARD DRIVER = 173.506946 <K> = 289.254578 <K> ROSETTA:CAMERA TCCD ROSETTA:CAMERA T SENSORHEAD = 296.572658 <K> = 297.844610 <K> ROSETTA:CAMERA T ADC 1 ROSETTA:CAMERA T ADC 2 = 283.452386 <K> = 283.992530 <K> ROSETTA:CAMERA T SHUTTER MOTOR 1 ROSETTA:CAMERA T SHUTTER MOTOR 2 ROSETTA: CAMERA T POWER CONVERTER = 318.927650 <K> ROSETTA:CAMERA T DOSIMETER = 291.763634 <K> = SR TEMPERATURE_STATUS END_GROUP /* RADIATION ENVIRONMENT */ GROUP = SR RADIATION STATUS = 458.066882 < rad >ROSETTA:CAMERA DOSIS = 177ROSETTA: SREM PROTONS GT 20MEV ROSETTA:SREM_PROTONS_50_TO_70MEV = 3 ROSETTA: SREM ELECTRONS LT 2MEV = NULL END GROUP = SR RADIATION STATUS OBJECT = BLADE1 PULSE ARRAY INTERCHANGE FORMAT = BINARY = "Shutter Blade 1 pulse data" NAME = "Raw 2.1 MHz Position encoder timer data for shutter blade 1" DESCRIPTION = 1 AXES = 440 AXIS ITEMS OBJECT = ELEMENT DATA TYPE = LSB UNSIGNED INTEGER BYTES = 4 = "COUNT" NAME END OBJECT = ELEMENT END OBJECT = BLADE1 PULSE ARRAY OBJECT = BLADE2 PULSE ARRAY = BINARY INTERCHANGE FORMAT

NAME	<pre>= "Shutter Blade 2 pulse data"</pre>
DESCRIPTION	= "Raw 2.1 MHz Position encoder timer data for shutter blade 2"
AXES	= 1
AXIS_ITEMS	= 440
OBJECT	= ELEMENT
DATA_TYPE	= LSB_UNSIGNED_INTEGER
BYTES	= 4
NAME	= "COUNT"
END_OBJECT	= ELEMENT
END_OBJECT	= BLADE2_PULSE_ARRAY
OBJECT	<pre>= IMAGE</pre>
BANDS	= 1
FIRST_LINE	= 433
FIRST_LINE_SAMPLE	= 529
INTERCHANGE_FORMAT	= BINARY
LINES	= 1024
LINE_SAMPLES	= 1024
SAMPLE_BITS	= 16
SAMPLE_TYPE	= LSB_UNSIGNED_INTEGER
DERIVED_MINIMUM	= 247.000000
DERIVED_MAXIMUM	= 10357.000000
MEAN	= 841.232027
END OBJECT	= IMAGE

END

Appendix 2 – Example OSIRIS History Label

```
OBJECT
                                   = HISTORY
  GROUP
                                   = TMI2PDS
    COMMAND IMAGE INDEX
                                    = 3
   ORFA_SUBMISSION_ID
ACTIVITY_NAME
ACTIVITY_TYPE
                                     = "281"
                                    = "21-Lutetia FlyBy"
                                    = "SCIENCE"
    OBSERVATION_DESCRIPTION = "LUTETIA: Closest Approach"
OBSERVATION_NAME = "SR 05"
                                    = "OIOR_PI7RSO_D_0018_SR_05____00281.itl"
= "0018"
    OIOR FILENAME
    PLANNING PHASE
                                       = "0018"
    TIME
                                       = 2010 - 12 - 02T10:49:10.622
    INPUT_FILE_ARG = "\\osi-storage\archive\data\spacecraft\pfm\flight\*"
INPUT_FILE = "\\osi-storage\archive\data\spacecraft\pfm\flight\LutetiaFlyBy_2010\pds\level0\WAC_2010-
07-10T15.41.16.488Z ID00 1251276003 F71.img"
    OUTPUT FILE
                                       = "<DEFAULT>"
                                       = "."
    OUTPUT DIR
                                       = "\\osi-storage\archive admin\Database\ArchivingDatabase"
    PDS DB
                                     = "\\osi-storage\archive\Database\Kernels"
    SPICE DB
                                    = "\\osi-storage\archive\uplink"
    UPLINK DB
    REPROCESS
                                     = FALSE
    DETECT_FDM_STATE
FORCE_TARGET_UNKNOWN
                                     = TRUE
                                     = FALSE
    CORRECT FILENAME
                                      = TRUE
    RECURSIVE
                                       = TRUE
                                      = TRUE
    USE ADS
                                    = PDS_ARCHIVE
    ARCHIVE TYPE
                                     = FALSE
    BUILD JPEG
    BUILD THUMBNAILS
                                     = FALSE
    CODMAC
                                     = TRUE
    IMPORT_RIS_ARCHIVE
USE REVISION CONTROL
                                     = TRUE
                                     = FALSE
    USE SHORT FILENAME
                                       = TRUE
```
SKIP SHM ERRORS	= TRUE
RESTRICT_TO_MISSION_PHASE	= "AST2"
USING_INSTRUMENT_ID	= "OSIWAC"
USING_INSTRUMENT_NAME	= "OSIRIS - WIDE ANGLE CAMERA"
END_GROUP	= TMI2PDS

END_OBJECT

= HISTORY

END