European Space Agency Research and Science Support Department Planetary Missions Division

ROSETTA-COSIMA

To Planetary Science Archive Interface Control Document

FMI_S-COS-ICD-001-AD-05

Issue 1.3

3 February 2011

Prepared by: Maria Genzer, Jouni Rynö, FMI

Approved by: Johan Silen, FMI

Distribution List

Recipient	Organisation	Recipient

Change Log

Date	Sections Changed	Reasons for Change
1 March 2004	All sections	Draft 2
23.January.2006	All sections	First official release
9 October. 2006	1.5, 2, 3,4.3	Dataset delivery scheme updated, geometry information added. All the labels updated
12 December 2008		Spectrum data contains mass scale
3 February 2011	2.3, 2.4.1, 3.2.3, 4.3	New formats for images, new products for scans and heating

TBD ITEMS

Section	Description

Table Of Contents

1.1 PURPOSE AND SCOPE. 4 1.2 ACCILLYING AUTHORITIES. 4 1.3 CONTENTS. 4 1.4 INTENDED READERSHIP 4 1.5 APPLICARE AND REPERCE DOCUMENTS. 4 1.6 ACRONYMS AND ABBREVIATIONS. 5 1.7 CONTACT NAMES AND ADDRESSES. 6 2 OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND PRODUCT GENERATION 7 2.1 SCHENTIFIC OBJECTIVES. 7 2.1 SCHENTIFIC ODJECTIVES. 7 2.2 ISCOPE 11 2.2.1 TMUU. 9 2.2.1 ZOUSISCOPE 11 2.2.4 Primary Ion Beam System (PBS). 11 2.4 OPTRIVE OF DATA PRODUCTS 12 2.4 OPTRIVE OF DATA PRODUCTS. 12 2.4 OPTRIVE OF DATA PRODUCTS. 13 2.4 OPTRIVE OF DATA PRODUCTS. 14 2.4.2 Scientific analysis oftware. 14	1 INTRODUCTION	4
12 ARCHIVING AUTHORITIES. 4 1.3 CONTENTS. 4 1.4 INTENDED READERSHIP. 4 1.5 APPLICABLE AND RUPERINCE DOCUMENTS. 5 1.6 ACRONYMS AND ABREVIATIONS. 5 1.7 CONTACT NAMES AND ADDRESSES. 6 2 OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND PRODUCT GENERATION 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.2 TOW 9 2.2.1 TMU. 9 2.2.2 ONTACOPF. 11 2.3 JATA HANDLING PROCESS 11 2.4.2 STIM-OFFIGHT System (PIBS). 11 2.2.4 OFDC 12 2.3 DATA HANDLING PROCESS 12 2.4 OFTACC 12 2.4 OFTACC 12 2.4 DATA PRODUCTS 12 2.4 A DECOMERTAND </th <th>1.1 PURPOSE AND SCOPE</th> <th>4</th>	1.1 PURPOSE AND SCOPE	4
13 CONTENTS		
14. INTENDED READERSHIP		
15 APPLICABLE AND REFERENCE DOCUMENTS. 4 16 ACRONYMS AND ABBREVIATIONS. 5 1.7 CONTACT NAMES AND ABBREVIATIONS. 5 2.0 VERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND PRODUCT GENERATION 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.1 INTUMENT SUB-SYSTEMS. 8 2.2 INSTRUMENT SUB-SYSTEMS. 8 2.2.1 ITMU 9 2.2.2 OSISCOPE. 11 2.2.3 Primary Ion Source (PIS). 11 2.2.4 Frimary Ion Beam System (PIBS). 11 2.2.5 TIP. 12 2.3 DATA HANDLING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.1 General. 13 2.4.2 Scientific analysis software. 14 2.4.3 Documentation. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 optimare. 14 2.4.6 Derived and other Data Products. 14 2.4.7 Data processing software. 14 2.4.8 Data and other Data Products. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. <td< td=""><td></td><td></td></td<>		
16 ACRONYMS AND ABBREVITIONS. 5 1.7 CONTACT NAMES AND ADDRESSES. 6 2 OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND PRODUCT GENERATION 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.1 INSTRUMENT SUB-SYSTEMS. 8 2.2.1 T/WU. 9 2.2.2 COSISCOPE. 11 2.2.3 Primary Ion Beam System (PIBS). 11 2.2.5 Time-OF-Flight Spectrometer (TOF). 12 2.4 TOC. 12 2.3 DATA HANDLING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.2 Software. 14 2.4.2 Software. 14 2.4.3 Documentation. 14 2.4.4 Data processing software. 14 2.4.3 Documentation. 14 2.4.4 Documentation. 14 2.4.5 Ancillary Data Usage. 15 3.1 DELIVERIES AND ARCHIVE VOLU		
1.7 CONTACT NAMES AND ADDRESSES		
2 OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND PRODUCT GENERATION 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.1 SCIENTIFIC OBJECTIVES. 7 2.2 INSTRUMENT SUB-SYSTEMS. 8 2.2.1 TIMU. 9 2.2.2 COSISCOPE. 11 2.2.3 Timery Ion Bearn System (PIBS). 11 2.2.5 Time-OF-Flight Spectrometer (TOF). 12 2.2.6 TDC. 12 2.3 DATA HANDING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.1 General. 13 2.4.2 Software. 14 2.4.3 Software. 14 2.4.3 Documentation. 14 2.4.3 Documentation. 14 2.4.4 Software. 14 2.4.3 Documentation. 14 2.4.4 Software. 14 2.4.3 Documentation. 14 2.4.4 Software. 14 2.4.3 Documentation. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 CONVENTONS. 15 3.2 Dowestriot COSIMA data products will be named as follows: 16 3.3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 16 <td></td> <td></td>		
2.2 INSTRUMENT SUB-SYSTEMS. 8 2.2.1 TMU 9 2.2.2 COSISCOPE 11 2.2.3 Primary Ion Source (PIS) 11 2.2.4 Primary Ion Beam System (PIBS) 11 2.2.5 Time-OF-Flight Spectrometer (TOF) 12 2.2.6 TDC 12 2.3 DATA HANDLING PROCESS 12 2.4 OVERVEW OF DATA PRODUCTS 13 2.4.1 General 13 2.4.2 Software 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products 14 2.4.5 Ancillary Data Usage 14 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT 15 3.2 Convertition COSIMA data products will be named as follows: 16 3.3.1 PDS Standards. 16 3.3.1 PDS Standards. 16 3.3.1 PDS Standards. 16	2 OVERVIEW OF INSTRUMENT DESIGN, DATA HANDLING PROCESS AND PRODUCT GENERA	ATION
2.2.1 TMU	2.1 Scientific Objectives	7
2.2.1 TMU	2.2 Instrument sub-systems	
2.2.2 COSISCOPE. 11 2.3 Primary Ion Source (PIS) 11 2.2.4 Primary Ion Seam System (PIBS) 11 2.2.5 Time-Of-Flight Spectrometer (TOF) 12 2.2.6 TDC. 12 2.3 DATA HANDLING PROCESS 12 2.4 OVERVIEW OF DATA PRODUCTS 13 2.4.1 General. 13 2.4.2 Software 14 2.4.2 Software 14 2.4.2 Software 14 2.4.2 Scientific analysis software. 14 2.4.2 Scientific analysis software. 14 2.4.3 Data processing software. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 2.4.5 Ancillary Data Usage. 14 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 CONVENTIONS. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention 16 3.3.1 PDS Standards. 17		
22.3 Primary Ion Source (PIS) 11 22.4 Primary Ion Beam System (PIBS) 11 22.5 Time-Of-Flight Spectrometer (TOF) 12 22.6 TDC 12 2.3 DATA HANDLING PROCESS 12 2.4 OVERVIEW OF DATA PRODUCTS 13 2.4.1 General 13 2.4.2 Software 14 2.4.2.2 Scientific analysis software 14 2.4.2 Software 14 2.4.2 Software 14 2.4.2 Scientific analysis software 14 2.4.2 Software 14 2.4.2 Scientific analysis software 14 2.4.3 Documentation 14 2.4.4 Derived and other Data Products 14 2.4.5 Ancillary Data Usage 14 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT 15 3.2 Conventions 15 3.2.1 Data Set ID Formation 15 3.2.2 Data Directory Naming Convention 16 3.3.2 Time Standards 16 3.3.2 Time Standards 16 3.3.2 Time Standards 16 3.3.1 Directories 17 3.4 Other Applicable Standards 17		
2.2.4 Primary Ion Beam System (PIBS). 11 2.2.5 Time-0J-Flight Spectrometer (TOF). 12 2.2.6 DDC. 12 2.3 DATA HANDLING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.1 General. 13 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Socientific analysis software. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 2.4.5 Ancillary Data Usage. 14 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 CONVENTIONS. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 15 3.3.2 Time Standards. 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 17 3.4 Other Applicable Standards 17 3.5.1 Volume Set. 17 3.5.1 Volume Set. 17 3.5.3 Catalog Directory. 18 <t< td=""><td></td><td></td></t<>		
22.5 Time-Of-Flight Spectrometer (TOF) 12 2.2 G TDC 12 2.3 DATA HANDLING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS 13 2.4.1 General 13 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Socientific analysis software. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 3.4.6 AncHIVE FORMAT AND CONTENT. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 CONVENTIONS. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 16 3.3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.3 Reference Systems. 17 3.4 Other Applicable Standards. 17 3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3 In Root Directory.		
2.2.6 TDC. 12 2.3 DATA HANDLING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.1 General. 13 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Software. 14 2.4.2 Scientific analysis software. 14 2.4.2 Scientific analysis software. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 3 ARCHIVE FORMAT AND CONTENT. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 16 3.3.1 PDS Standards. 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.3 A Other Applicable Standards. 17 3.5.1 Spacecraft Clock Count, OBT. 17 3.5.1 Volume Set. 17 3.5.2 CONTENT. 17 3.5.3 Directories. 18 3.5.3 Content 17 3.5.4 Undex D		
2.3 DATA HANDLING PROCESS. 12 2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.1 General. 13 2.4.2 Software. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 3 ARCHIVE FORMAT AND CONTENT. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 Conventions. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 16 3.3.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3.1 PDS Standards. 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. <t< td=""><td></td><td></td></t<>		
2.4 OVERVIEW OF DATA PRODUCTS. 13 2.4.1 General. 13 2.4.2 Software. 14 2.4.2.3 Scientific analysis software. 14 2.4.2.4.1 Data processing software. 14 2.4.2.2 Scientific analysis software. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 3 ARCHIVE FORMAT AND CONTENT. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2.1 Data Set ID Formation. 15 3.2.2 CONVENTIONS. 15 3.2.1 Data Set ID Formation. 16 3.2.2 Standards. 16 3.3.2 Filenaming Convention. 16 3.3.3 Filenaming Convention. 16 3.3.1 PDS Standards. 16 3.3.2.1 Spaceraft Clock Count, OBT. 16 3.3.3.1 PDS Standards. 16 3.3.3.4 Other Applicable Standards. 17 3.5.1 Volume Set. 17 3.5.3 Directories. 17 3.5.3 Calibration Directory. 18 3.5.3.1 Root Directory. 18 3.5.3 Chalog Directory.		
2.4.1 General. 13 2.4.2 Software 14 2.4.2.1 Data processing software. 14 2.4.2.2 Scientific analysis software. 14 2.4.2.2 Scientific analysis software. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 3 ARCHIVE FORMAT AND CONTENT. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 Conventions. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 16 3.3.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.3 Reference Systems. 17 3.4 Other Applicable Standards. 17 3.5.1 Noture Set. 17 3.5.3 Directories. 18 3.5.3 Calabatio Directory. 18 3.5.3 Calabatio Directory. 18 3.5.3 Calabatio Directory. 18 3.5.3 Directories. 18 3.5.3 Directories. 18 <t< td=""><td></td><td></td></t<>		
2.4.2 Software 14 2.4.2.1 Data processing software 14 2.4.2.2 Scientific analysis software 14 2.4.3 Documentation 14 2.4.3 Documentation 14 2.4.4 Derived and other Data Products 14 2.4.5 Ancillary Data Usage 14 3 ARCHIVE FORMAT AND CONTENT 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT 15 3.2 CONVENTIONS 15 3.2.1 Data Set ID Formation 15 3.2.2 Data Directory Naming Convention 16 3.3.2 Thelenaming Convention COSIMA data products will be named as follows: 16 3.3.1 PDS Standards 16 3.3.1 Spacecraft Clock Count, OBT 16 3.3.1 Spacecraft Clock Count, OBT 16 3.3.1 Spacecraft Clock Count, OBT 16 3.3.4 Other Applicable Standards 17 3.5.1 Volume Set 17 3.5.2 Data Set 17 3.5.3 Calibation Directory 18 3.5.3 Calibation Directory 18 3.5.3 Contreenty 18 3.5.3 Calibation Directory 18 3.5.3 Catalog Directory and Browse Files 18		
2.4.2.1 Data processing software		
2.4.2.2 Scientific analysis software. 14 2.4.3 Documentation. 14 2.4.3 Documentation. 14 2.4.4 Derived and other Data Products. 14 2.4.5 Ancillary Data Usage. 14 3 ARCHIVE FORMAT AND CONTENT. 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 CONVENTIONS. 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention 16 3.3.2 Filenaming Convention COSIMA data products will be named as follows: 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.3 Reference Systems. 17 3.4 Other Applicable Standards. 17 3.5.1 Volume Set. 17 3.5.1 Not Directory. 18 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18	v v	
2.4.3 Documentation 14 2.4.4 Derived and other Data Products 14 2.4.5 Ancillary Data Usage 14 3 ARCHIVE FORMAT AND CONTENT 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT 15 3.2 CONVENTIONS 15 3.2.1 Data Set ID Formation 15 3.2.2 Data Directory Naming Convention 16 3.3 TIENDARDS USED IN DATA PRODUCT GENERATION 16 3.3.1 PDS Standards 16 3.3.2.1 Spacecraft Clock Count, OBT 16 3.3.2.1 Spacecraft Clock Count, OBT 16 3.3.2.5 Nother Applicable Standards 16 3.3.2.1 Spacecraft Clock Count, OBT 16 3.3.3 Reference Systems 17 3.4 Other Applicable Standards 17 3.5.1 Volume Set 17 3.5.2 Data Set 17 3.5.3 Directory 18 3.5.3.1 Root Directory 18 3.5.3.2 Calibration Directory 18 3.5.3.3 Catalog Directory 18 3.5.3.4 Index Directory and Browse Files 18 3.5.3.5 Browse Directory and Browse Files 18 3.5.3.6 Geometry Directory 18		
2.4.4 Derived and other Data Products.142.4.5 Ancillary Data Usage.143 ARCHIVE FORMAT AND CONTENT.153.1 DELIVERIES AND ARCHIVE VOLUME FORMAT.153.2 CONVENTIONS.153.2 CONVENTIONS.153.2.1 Data Set ID Formation.163.2.3 Filenaming Convention COSIMA data products will be named as follows:163.3 STANDARDS USED IN DATA PRODUCT GENERATION.163.3.1 PDS Standards.163.3.2 Time Standards.163.3.2.1 Spacecraft Clock Count, OBT.163.3.3 Reference Systems.173.4 Other Applicable Standards.173.5 CONTENT.173.5.1 Volume Set.173.5.1 Volume Set.173.5.3.1 Roto Directory.183.5.3.2 Calibration Directory.183.5.3.3 Catalog Directory and Browse Files.183.5.3.6 Geometry Directory and Browse Files.183.5.3.6 Geometry Directory.18		
2.4.5 Ancillary Data Usage 14 3 ARCHIVE FORMAT AND CONTENT 15 3.1 DELIVERIES AND ARCHIVE VOLUME FORMAT. 15 3.2 CONVENTIONS 15 3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 16 3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION. 16 3.3.1 PDS Standards. 16 3.3.2.1 Spacecraft Clock Count, OBT. 16 3.3.3 Reference Systems. 17 3.4 Other Applicable Standards. 17 3.5.1 Notume Set. 17 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory. 18 3.5.3.6 Geometry Directory. 18		
3 ARCHIVE FORMAT AND CONTENT		
3.2 CONVENTIONS 15 3.2.1 Data Set ID Formation 15 3.2.2 Data Directory Naming Convention 16 3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION 16 3.3.1 PDS Standards 16 3.3.2 Time Standards 16 3.3.2 Time Standards 16 3.3.2 Negreeraft Clock Count, OBT 16 3.3.4 Other Applicable Standards 17 3.4 Other Applicable Standards 17 3.5 CONTENT 17 3.5 I Volume Set 17 3.5.1 Volume Set 17 3.5.2 Data Set 17 3.5.3 Directories 18 3.5.3.1 Root Directory 18 3.5.3.2 Calibration Directory 18 3.5.3.3 Catalog Directory 18 3.5.3.5 Browse Directory and Browse Files 18 3.5.3.6 Geometry Directory 18		
3.2 CONVENTIONS 15 3.2.1 Data Set ID Formation 15 3.2.2 Data Directory Naming Convention 16 3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION 16 3.3.1 PDS Standards 16 3.3.2 Time Standards 16 3.3.2 Time Standards 16 3.3.2 Negreeraft Clock Count, OBT 16 3.3.4 Other Applicable Standards 17 3.4 Other Applicable Standards 17 3.5 CONTENT 17 3.5 I Volume Set 17 3.5.1 Volume Set 17 3.5.2 Data Set 17 3.5.3 Directories 18 3.5.3.1 Root Directory 18 3.5.3.2 Calibration Directory 18 3.5.3.3 Catalog Directory 18 3.5.3.5 Browse Directory and Browse Files 18 3.5.3.6 Geometry Directory 18	2.1 Del medies and Adouble Volume Format	15
3.2.1 Data Set ID Formation. 15 3.2.2 Data Directory Naming Convention. 16 3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION. 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION. 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.2 Time Standards. 16 3.3.2 Time Standards. 16 3.3.2 Standards. 16 3.3.2 Time Standards. 16 3.3.2 Time Standards. 16 3.3.2 Standards. 16 3.3.2 Time Standards. 16 3.3.4 Other Applicable Standards. 17 3.4 DATA VALIDATION. 17 3.5 I Volume Set. 17 3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3 Directories. 18 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geomet		
3.2.2 Data Directory Naming Convention. 16 3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION. 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.4 Other Applicable Standards. 17 3.4 Other Applicable Standards. 17 3.5 CONTENT. 17 3.5 CONTENT. 17 3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3 Calibration Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.2.3 Filenaming Convention COSIMA data products will be named as follows: 16 3.3 STANDARDS USED IN DATA PRODUCT GENERATION 16 3.3.1 PDS Standards. 16 3.3.2 Time Standards. 16 3.3.3 Reference Systems. 17 3.4 Other Applicable Standards. 17 3.4 DATA VALIDATION. 17 3.5 CONTENT. 17 3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.3 STANDARDS USED IN DATA PRODUCT GENERATION 16 3.3.1 PDS Standards 16 3.3.2 Time Standards 16 3.3.2.1 Spacecraft Clock Count, OBT 16 3.3.3 Reference Systems 17 3.4 Other Applicable Standards 17 3.4 Other Applicable Standards 17 3.5 CONTENT 17 3.5.1 Volume Set 17 3.5.2 Data Set 17 3.5.3 Directories 18 3.5.3.2 Calibration Directory 18 3.5.3.4 Index Directory 18 3.5.3.5 Browse Directory and Browse Files 18 3.5.3.6 Geometry Directory 18		
3.3.1 PDS Standards		
3.3.2 Time Standards		
3.3.2.1 Spacecraft Clock Count, OBT		
3.3.3 Reference Systems. 17 3.3.4 Other Applicable Standards. 17 3.4 DATA VALIDATION. 17 3.5 CONTENT. 17 3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3 Directories. 17 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.3.4 Other Applicable Standards. 17 3.4 DATA VALIDATION. 17 3.5 CONTENT. 17 3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3 Directories. 17 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18	•	
3.4 DATA VALIDATION. 17 3.5 CONTENT. 17 3.5 I Volume Set. 17 3.5.2 Data Set. 17 3.5.3 Directories. 17 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.5 CONTENT		
3.5.1 Volume Set. 17 3.5.2 Data Set. 17 3.5.3 Directories. 18 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.5.2 Data Set		
3.5.3 Directories. 18 3.5.3.1 Root Directory. 18 3.5.3.2 Calibration Directory. 18 3.5.3.3 Catalog Directory. 18 3.5.3.4 Index Directory. 18 3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.5.3.1 Root Directory.183.5.3.2 Calibration Directory.183.5.3.3 Catalog Directory.183.5.3.4 Index Directory.183.5.3.5 Browse Directory and Browse Files.183.5.3.6 Geometry Directory.18		
3.5.3.2 Calibration Directory.183.5.3.3 Catalog Directory.183.5.3.4 Index Directory.183.5.3.5 Browse Directory and Browse Files.183.5.3.6 Geometry Directory.18		
3.5.3.3 Catalog Directory.183.5.3.4 Index Directory.183.5.3.5 Browse Directory and Browse Files.183.5.3.6 Geometry Directory.18		
3.5.3.4 Index Directory.183.5.3.5 Browse Directory and Browse Files.183.5.3.6 Geometry Directory.18		
3.5.3.5 Browse Directory and Browse Files. 18 3.5.3.6 Geometry Directory. 18		
3.5.3.6 Geometry Directory		

3.5.3.8 Gazetter Directory	
3.5.3.9 Label Directory	
3.5.3.10 Document Directory	
3.5.3.11 Extras Directory	
3.5.3.12 Data Directory	
4 DETAILED INTERFACE SPECIFICATIONS	
4.1 Structure and Organization Overview	
4.2 DATA SETS, DEFINITION AND CONTENT	
4.3 DATA PRODUCT DESIGN	
4.3.1 Time-of flight spectrum product	
4.3.1.1 General description	
4.3.1.2 Label example	
4.3.2 Peak list product	
4.3.2.1 General Description	
4.3.2.2 Label example	
4.3.3 Time-of-flight spectrum housekeeping data product	
4.3.3.1 General description	
4.3.3.2 Label example	
4.3.4 Scan data product	
4.3.4.1 General description	
4.3.4.2 Label example	
4.3.5 Scan housekeeping data product	
4.3.5.1 General description	
4.3.5.2 Label example	
4.3.6 Heating data product	
4.3.6.1 General description	
4.3.6.2 Label example	
4.3.7 Cleaning data product	
4.3.7.1 General description	
4.3.8 Cleaning housekeeping data product	
4.3.8.1 General description	
4.3.8.2 Label example	
4.3.9 COSISCOPE image product	
4.3.9.1 General description	
4.3.9.2 Label example	
4.3.10 COSISCOPE dust grain list product	
4.3.10.1 General description	
4.3.10.2 Label template	
4.3.11 COSISCOPE housekeeping product	
4.3.11.1 General information	
4.3.11.2 Label example	
4.3.12 Substrate history ancillary product	
4.3.12.1 General description	
4.3.12.2 Label example	
5 APPENDIX: DIRECTORY LISTING OF DATA SET RO-CAL-COSIMA-	-3-V3.0

1 Introduction

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is two fold. First it provides users of the the COSIMA instrument with a detailed description of the product and a description of how it was generated, including data sources and destinations. Secondly, it is the official interface between the COSIMA instrument team and Rosetta archiving authority.

1.2 Archiving Authorities

ESA's Planetary Science Archive (PSA).

1.3 Contents

This document describes the data flow of the COSIMA instrument on ROSETTA from the spacecraft until the insertion into the PSA for ESA. It includes information on how data were processed, formatted, labeled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained. Software that may be used to access the product is explained further on.

The design of the data set structure and the data product is given. Examples of these are given in the appendix.

1.4 Intended Readership

The staff of the archiving authority (Planetary Science Archive, ESA, RSSD, design team) and any potential user of the COSIMA data.

1.5 Applicable and Reference Documents

[AD-01] Planetary Data System Data Preparation Workbook, February 17, 1995, Version 3.1, JPL, D-7669, Part 1

[AD-02] Planetary Data System Standards Reference, August 1, 2003, Version 3.6, JPL, D-7669, Part 2

[AD-03] ROSETTA Archive Generation, Validation and Transfer Plan, October 6, 2005, RO-EST-PL-5011, Issue 2, Revision 2

[AD-04] Rosetta Time Handling, February 28, 2006, RO-EST-TN-3165, Issue 1, Revision 1

[RD-01] COSIMA User Manual, Version 3.7, 16 June 2010

[RD-02] Kissel et al:"Kissel, J. et al., COSIMA - High resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta, Space Sci. Rev., 128(1-4), 823-867, doi:10.1007/s11214-006-9083-0, 2007

[RD-03] Dahl, D.A., INEEL, Idaho Falls, Idaho 83415, DHL@inel.gov: The SIMION software manual, 1997 (and later versions).

[RD-04] Engrand C., Kissel J., Krueger F.R., Martin P., Silén J., Thirkell L., Thomas R., Varmuza K.: "Chemometric evaluation of time-of-flight secondary ion mass spectrometry data of minerals in the frame of future *in situ* analyses of cometary material by COSIMA onboard ROSETTA", *Rapid Commun. Mass Spectrom.* 20, 1361-1368, 2006.

[RD-05] Jessberger, E.K., J. Kissel (1991): Chemical properties of cometary dust and a note on carbon isotopes. in: *Comets in the post-Halley era*. Eds. R. Newburn, M. Neugebauer, J. Rahe. Springer Verlag, Heidelberg, 1075-1092

[RD-06] Kissel, J., R.Z. Sagdeev, J.L. Bertaux, V.N. Angarov, J. Audouze, J.E. Blamont, K. Büchler, H. von Hoerner, N.A. Inogamov, V.N. Khromov, W. Knabe, F.R. Krueger, Y. Langevin, A.C. Levasseur-Regourd, G.G. Managadze, S.N. Podkolzin, V.D. Sharipo, S.R. Tabaldyev, and B.V. Zubkov":

"Composition of Comet Halley Dust Particles From VEGA Observations", NATURE, Vol.321, No.6067, 280–282, 1986.

[RD-07] Kissel, J., D.E. Brownlee, K. Büchler, B.C. Clark, H. Fechtig, E. Grün, K. Hornung, E.B. Igenbergs, E.K. Jessberger, F.R. Krueger, H. Kuczera, J.A.M. McDonnell, G.E. Morfill, J. Rahe, G.H. Schwehm, Z. Sekanina, N.G. Utterback, H.J. Völk, and H. Zook: "Composition of Comet Halley Dust Particles From GIOTTO Observations", NATURE (Encounters with Comet Halley - The First Results), Vol. 321, NO. 6067, 336–337, 1986.

[RD-08] Kissel, J. and F.R. Krueger: "The Organic Component in Dust From Comet Halley as Measured by the PUMA Mass-Spectrometer on Board VEGA 1", NATURE 326, 755–760, 1987.

[RD-09] Krueger, F.R.: "Dust Collector Materials for SIMS Analysis in Space", A Feasibility Study for CoMA, part 1, Aug. 1988, part 2, Jan. 1989, and part 3, Sept. 1989.

[RD-10] Krueger, F.R., A. Korth, and J. Kissel: "The Organic Matter of Comet Halley as Inferred by Joint Gas Phase and Solid Phase Analyses", Space Science Reviews 56, 167–175, 1991.

[RD-11] Mamyrin B.A., V.I. Karatyev, D.V. Shmikk, and V.A. Zagulin: "Mass-Reflectron - A New High-Resolution Nonmagnetic Time-of-Flight Mass-Spectrometer" Zh Eksp. i Teor. Fiz. 64, 82 or: Sov. Phys. JETP 37, No.1, July 1973.

[RD-12] Mazets, E.P., R.Z. Sagdeev, R.L. Aptekar, S.V. Golenetskii, Yu.A. Guryan, A.V. Dyachkov, V.N. Ilyinskii, V.N. Panov, G.G. Petrov, A.V. Savvin, I.A. Sokolov, D.D. Frederiks, N.G. Khavenson, V.D. Shapiro, and V.I. Shevchenko: "Dust in comet P/Halley from VEGA observations", Astronomy and Astrophysics, 187, 699–706, 1987.

[RD-13] McDonnell, J.A.M., S.F. Green, E. Grün, J. Kissel, S. Nappo, G.S. Pankiewicz, and C.H. Perry: "In Situ Exploration of the Dusty Coma of Comet P/Halley at Giotto's Encounter: Flux Rates and Time Profiles From 10-19 kg to 10-5 kg", Adv. Space Res. Vol.9, No.3, 277–280, 1989.

[RD-14] Schwab, M., CEMEC GmbH, Obererlbach, FRG: Design of the COSIMA Target Manipulator, (private communication), 1998.

[RD-15] Stephan, T.: "TOF-SIMS in Cosmochemistry", Planet. Space Sci., 49, 859–906, 2001.

[RD-16] Varmuza K., W. Werther, F.R. Krueger, J. Kissel, E.R. Schmid: "Organic substances in cometary grains: Comparison of secondary ion mass spectral data and californium-252 plasma desorption data from reference compounds", Int. J. Mass Spectrom., 189, 79-92, 1999.

[RD-17] Varmuza K., Kissel J., Krueger F. R., Schmid E. R.: "Chemometrics and TOF-SIMS of organic compounds near a comet", in Advances in Mass Spectrometry, Gelpi E., Ed.; Wiley & Sons, Chichester, Vol. 15, p. 229-246, 2001.

[RD-18] Werther W., Demuth W., Krueger F. R., Kissel J., Schmid E. R., Varmuza K.: "Evaluation of mass spectra from organic compounds assumed to be present in cometary grains. Exploratory data analysis", J. Chemom., 16, 99-110, 2002.

[RD-19] Zscheeg, H, J. Kissel, Gh. Natour, and E. Vollmer: "CoMA - an Advanced Space Experiment For in Situ Analysis of Cometary Matter", Astrophysics and Space Science 195, 447–461, 1992.

1.6 Acronyms and Abbreviations

- ANCDR Ancillary Data Record
- COSIMA Cometary Secondary Ion Mass Analyzer
- DDS Data Distribution System
- ESA European Space Agency
- FM Flight Model
- FMI Finnish Meteorological Institute
- HVC High Voltage Control
- LVC Low Voltage Control
- MPS Max-Planc-Institut für Sonnensystemforschung
- PDS Planetary Data System

- PIS Primary Ion Source
- PIBS Primary Ion Beam System
- PDF Portable Document Format
- PSA Planetary Science Archive
- REFDR Reformatted Data Record
- RSDB Rosetta Database
- SIMS Secondary Ion Mass Spectrometer
- TBC To Be Confirmed
- TBD To Be Defined
- TBW To Be Written
- TDC Time-to-Digital Converter
- TMU Target Manipulator Unit
- TOF Time-Of-Flight
- UTC Universal Time Coordinated

1.7 Contact Names and Addresses

PDS datasets:

Finnish Meteorological Institute Johan Silén, Jouni Rynö, Maria Genzer E-mail: <u>firstname.lastname@fmi.fi</u> Tel: + 358 9 19291 Fax: + 358 9 1929 4603

Address:

Finnish Meteorological Institute Space Research P.O. Box 503 00101 Helsinki, Finland

Science issues:

Dr. Martin Hilchenbach Max-Planck-Institut für Sonnensystemforschung Max-Planck-Str. 2 37191 Katlenburg-Lindau Germany

Tel: +49 5556 979 162 Fax +49 5556 979 240

2 Overview of Instrument Design, Data Handling Process and Product Generation

2.1 Scientific Objectives

The in situ chemical analysis of solids in space is among the tasks which are technically most difficult. There are two main reasons for that: With a few exceptions solids in space are not abundant, and secondly it is not easy to remove small samples from the solid into the vacuum for the analysis in a mass spectrometer.

For COSIMA the objects of interest are cometary dust particles, which are abundant, indeed, in the neighbourhood of the comet nucleus. It remains, however, to collect and bring the particles to the entrance of the spectrometer.

Most mass spectrometers need parts of the sample to be analyzed, to carry an electronic charge. The process of removing an ion from the specimen is then the critical feature of the method to be chosen.

The only mass spectrometric data on cometary dust particles available to date, come from the dust impact mass spectrometers PIA and PUMA on the GIOTTO and VEGA spacecrafts, respectively. While other, remote, or indirect methods allow measurements of collective properties of the cometary dust, the mass spectrometers allowed the analysis of individual particles (cf Kissel et al. 1986a+b). Since then we know unambiguously that each particle is an intimate mixture of a mineral core and ices, and simple as well as complex organic molecules. Since the impact velocity was large (>60 km/s) mostly atomic ions were formed and analyzed in the Halley case. In a first attempt, however, Kissel and Krueger (1987) found evidence for the chemical nature of the organic cometary material. It is clear that not a few well known molecules constitute the cometary organics, but rather some chemical classes, with each being represented by a large number of individual substances. Indeed, it seems, that all stable molecules compatible with the chemical environment are formed and even cross-linked between them.

COSIMA therefore needed to be based on a method which is readily available in laboratory, and which allows for tracing the ion directly to the molecular and structural form in which it was present in the solid. Since the size distribution of the dust particles is known (cf, Mazets et al. 1987, McDonnell et al. 1989) a reasonable ionizing beam focus should be achieved under the limitations of space instrumentation. Even though the method would be destructive, its sensitivity should be high enough to allow several analyses at different depths for one individual, say 20 µm particle.

To satisfy all these requirements we choose the method of **S**econdary Ion **M**ass **S**pectroscopy (SIMS). A fast primary ion, in this case ¹¹⁵In⁺ at 10 keV, impacts the sample and releases by desorption molecules of the material under test, of which typically 0.1 to 10 % are ionized, the so-called secondary ions. For sensitivity reasons, the analysis of a rather large mass range should be achieved simultaneously, which in turn leads to the type of a time-of-flight mass spectrometer. The mass resolution must be high enough to resolve isobaric ions, at least between atomic and molecular ions. The total ion mass should at least cover 3500 Da. In total, the COSIMA instrument has the following main functional hardware elements:

- the dust collector and target manipulator (TMU),
- COSISCOPE, a microscope CCD camera for target inspection,
- the primary ion source,
- · the mass spectrometer including the ion extraction optics and the ion detector
- Electronics and computer.

It should be mentioned at this point, that COSIMA did profit from but is not identical to the earlier development of the CoMA instrument for the NASA mission CRAF (Zscheeg, 1992) which was canceled in 1992.

The entire development of COSIMA was challenged by the complexity of the cometary material which has to be expected. This has focused the goal of COSIMA on the identification of chemical classes and functional groups rather than the identification of individual substances. Consequently the system must have the capability to use the methods of chemometry to compress the raw data on board, which helps to reduce the data volume without losing any of the chemical information.

There is also another important aspect for COSIMA, which comes from the rather long time the spacecraft travels from launch in 2004 until the core of the measurements takes place in 2014: Quite a large number of relevant results will be obtained from laboratory measurements with TOF SIMS, be it by the COSIMA team or be it in the published literature. In addition, NASA in its DISCOVERY program has several comet missions, which are expected to produce new, relevant data, before COSIMA enters its main analysis phase. Even if most of the flexibility is with the software involved, it is the hardware, which has to provide the resources necessary. Looking back at the fast development in the computer sector over the last ten years this alone is a demanding task, even without the complexity of an up to date analysis instrument.

The scientific return from COSIMA consists primarily of time-of-flight spectra supported by housekeeping data. In addition to this, a limited number of peaks presented as a peak list, may be available. The time-of-flight spectra are archived according to standard PDS rules. These spectra are calibrated to a preliminary mass scale by automatic software.

In addition to time-of-flight spectra, pictures of dust targets (substrates) taken by COSISCOPE camera, and lists of dust grains found on the targets, are also archived.

Operational history of each target substrate is given. The history contains information about substrate storage and expose periods, cleaning and heating actions, COSISCOPE camera images and grains lists and any spectra taken. The history product contains history from the moment substrates were installed in the COSIMA flight instrument.

2.2 Instrument sub-systems

COSIMA sub-systems are described in more detail in COSIMA paper [RD2]. Only a brief description is given here, as the paper can found in ASCII and in PDF form from the DOCUMENT directory.

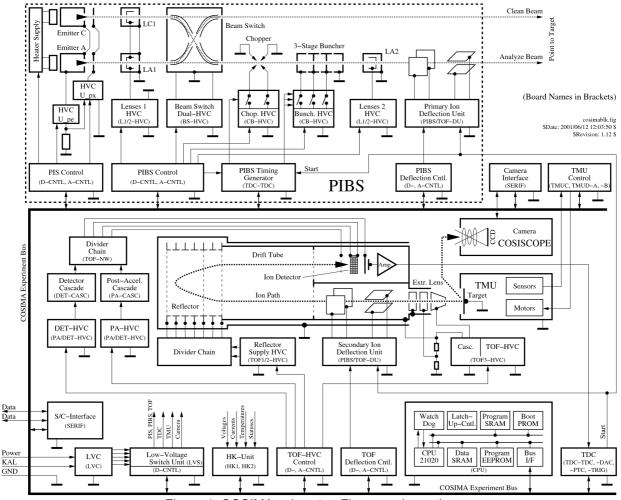


Figure 1: COSIMA subsystemFigures schematics

2.2.1 TMU

The Target Manipulator Unit keeps track of, stores and moves dust collection substrates in the instrument. There are total of 24 target holders, each containing 3 substrates. The substrate itself is a 10*10 millimeter plate, each having different chemical properties. The TMU can also be used to scan a substrate in front of an ion beam. The operation of the TMU is constrained by heat dissipation and is in general slow (tens of minutes per operation).

The substrates can have the following position identifications::

STORAGE, in target storage

IMAGE, substrate image

GRAINS, dust position list

PEAKS, peak list acquisition

SCAN, total count acquition

SPECTRUM, spectrum acquistion

EXPOSE, exposed to the outside, still in TMU grasp

COLLECT, exposed to the outside

CLEAN, at beam cleaning position

HEAT, at chemistry (heating) station

In the substrate history, if the substrate is not in the STORAGE, EXPOSE, COLLECT or HEAT position, it is grasped by the TMU and usually moved to the analysis position for SPECTRUM, SCAN or PEAKS or in front of the COSISCOPE for IMAGE or GRAINS.

The 24 target holders are numbered with hexadecimal numbers from #C1 to #D8. The top substrate is marked with the number #100, the middle with #200 and the low with #300. The combination of these numbers give the substrate identification number used in the instrument commanding and data handling.

The subsrates have the following properties:

- #1C1 Palladium, black
- #2C1 Platinum, deep black
- #3C1 Platinum, deep black
- #1C2 Silver, 73 micrometer thickness, blank with rectangular hole 3.5x3.5mm
- #2C2 Silver, 69 micrometer thickness, blank with AgTe spot of about 3 mm size at center
- #3C2 Gold, 17 micrometer thickness, olivine particles
- #1C3 Gold, 8 micrometer thickness
- #2C3 Gold, 15 micrometer thickness
- #3C3 Gold, 20-30 micrometer thickness
- #1C4 Palladium, black
- #2C4 Silver, 14 micrometer thickness
- #3C4 Gold, 12 micrometer thickness
- #1C5 Platinum, light black,
- #2C5 Platinum, deep black
- #3C5 Gold, 13 micrometer thickness
- #1C6 Platinum, deep black
- #2C6 Platinum, deep black
- #3C6 Gold, 8 micrometer thickness
- #1C7 Silver, blank

#2C7	Silver, 21 micrometer thickness
#3C7	Gold, 15 micrometer thickness
#1C8	Platinum, deep black
#2C8	Platinum, deep black
#3C8	Gold, 20-30 micrometer thickness
#1C9	Gold, 5-8 micrometer thickness
#2C9	Gold, 5-8 micrometer thickness
#3C9	Gold, 11 micrometer thickness
#1CA	Gold, 5-8 micrometer thickness
#2CA	Gold, 16 micrometer thickness
#3CA	Silver, 10 micrometer thickness
#1CB	Gold, 17 micrometer thickness
#2CB	Gold, 14 micrometer thickness
#3CB	Gold, 20-30 micrometer thickness
#1CC	Silver, 21 micrometer thickness
#2CC	Silver, 21 micrometer thickness
#3CC	Silver, 24 micrometer thickness
#1CD	Gold, 5-8 micrometer thickness
#2CD	Gold, 14 micrometer thickness
#3CD	Gold, 20-30 micrometer thickness
#1CE	Gold, 5-8 micrometer thickness, Ag particles
#2CE	Gold, 11 micrometer thickness
#3CE	Gold, 20-30 micrometer thickness
#1CF	Gold, 8 micrometer thickness
#2CF	Gold, 12 micrometer thickness, Ag particles
#3CF	Gold, 20-30 micrometer thickness
#1D0	Gold, 20-30 micrometer thickness
#2D0	Gold, 20-30 micrometer thickness
#3D0	Gold, 20-30 micrometer thickness, Ag particles
#1D1	Silver, blank
#2D1	Gold, 13 micrometer thickness
#3D1	Gold, 13 micrometer thickness
#1D2	Gold, 8 micrometer thickness
#2D2	Gold, 8 micrometer thickness
#3D2	Silver, 30 micrometer thickness
#1D3	Silver, 10 micrometer thickness
#2D3	Silver, 10 micrometer thickness
#3D3	Silver, 32 micrometer thickness
#1D4	Platinum, sintered
#2D4	Platinum, deep black
#3D4	Platinum, deep black

- #1D5 Platinum, deep black
- #2D5 Silver, 22 micrometer thickness
- #3D5 Silver, 21 micrometer thickness
- #1D6 Platinum, deep black
- #2D6 Palladium, black
- #3D6 Platinum, deep black
- #1D7 Silver, blank
- #2D7 Platinum, sintered
- #3D7 Platinum, sintered
- #1D8 Silver, blank, square hole 3.5x3.5mm at center
- #2D8 Silver, blank
- #3D8 Gold, 8 micrometer thickness

Positions in the substrate are given in substrate coordinates, which have the origin at lower left corner and range from 0 to 10000 micrometers in both horizontal (X) and vertical (Y) direction.

2.2.2 COSISCOPE

COSISCOPE is a CCD camera that is used to take pictures of TMU target substrates and find dust grains on them. COSISCOPE returns CCD images and grain lists with dust grain coordinates, sizes and brightness properties. The gray image has a 10 bit depth with resolution of 1024*1024 pixels and covers an area of 14*14 millimeters.

The COSISCOPE pixel coordinates are converted to substrate coordinates, which have the origin at lower left corner and range from 0 to 10000 micrometers in both horizontal (X) and vertical (Y) direction.

2.2.3 Primary Ion Source (PIS)

The Primary Ion Source provides isotopically clean ¹¹⁵In⁺. The ion source has a limited lifetime of nominally 2000 hours. After a long period of inactivity it may be difficult to start. The instrument contains two ion sources, both of which can be used. The startup of the PIS is slow (~ 0.5-1 hour). PIS has two ion sources, A (stands for 'Analyse') and C (stands for 'Clean'). A is primarily used for analysis operations, and C for cleaning operations.

2.2.4 Primary Ion Beam System (PIBS)

The Primary Ion Beam System focuses, bunches and deflects ions into periodic pulse trains to hit the dust grains to be analyzed. The beam thickness is less than 100 μ m and the pulse width a few ns. The PIBS can also be used to clean the target by a continuous beam. The instrument contains one analysis beam and one cleaning beam, each of which can use either ion source.

lons from two emitters (A and C) can reach either of two positions: 'Analyze' or 'Clean', depending of the Beam Switch (BS) in the center. The focusing elements are electrically shared, as only one beam can be active at any time. Chopper and Bunchers (CB) provide the pulsed beam for analysis, the deflection plates (PX,PY) are used for steering the beam spot on the target.

On the analyse channel, a first lens LA1 (or LC1 in the backup configuration) gives an image of the emitter in the inlet plane of the CHOPPER, then the buncher compresses the ion beam into the short pulses required on the target. A second lens LA2 builds the final image on the target sample.

The other ion beam used for cleaning has a first lens LC1 (or LA1 in the backup configuration), which gives an image used by LC2 to build the final image on the target in the clean position. The ion beam for cleaning is not pulsed.

2.2.5 Time-Of-Flight Spectrometer (TOF)

The Time Of Flight spectrometer consists of an ion extraction part, an ion reflectron and a detector. The ion extraction section is equipped with deflection plates (TX, TY) to control which ions can reach the detector. The reflectron removes some energy dispersion of incident ions and improves the mass resolution of the instrument. The detector is of micro sphere type.

2.2.6 TDC

The Time to Digital Converter is a digital counter measuring the time of flight for each individual ion. The device is controlled by the onboard computer. The accumulated measurement represents the time-of-flight spectrum of COSIMA.

2.3 Data Handling Process

All PDS data products will be prepared at the Finnish Meteorological Institute (see chapter 1.7 for contact information). All data processing levels mentioned in this document are PSA-compliant, as defined in RO-EST-PL-5011.

Level 1a COSIMA data will be fetched from the Rosetta Data Distribution System (DDS) by FMI, where it will be processed to Level 2 (REFDR), and further to Level 3 products.

COSIMA Level 2 (REFDR) products are:

- Time-of-flight spectra, with automatically calibrated mass scale and relevant housekeeping data. Spectra can be of either Positive or Negative ions.
- Onboard calculated peak list and relevant housekeeping data. The spectrum is given as counts per integer mass lines, separated to organic and inorcanic massed.
- Scan over substrate position or some measurement control parameter and relevan housekeeping data. The data is total counts of the events from the time-of-flight spectra for three possible mass/time ranges. The time range of the scan can contain spectra or peak list data.
- Substrate heating information.
- Substrate cleaning with the ion bean and the related housekeeping data.
- Substrate images. The images can be illuminated with either plus (right) side or minus (left) side led.
- Substrate dust grain feature (position, size, brightness) lists and relevant housekeeping data.
- Substrate history (auxiliary data)

The mass scale is calibrated with only two lines:

- positive mode
 - H or 12 C for low masses
 - ^o ¹¹⁵In or ¹⁰⁷Ag or ¹⁰⁹Ag for high masses
- negative mode
 - H or CH for low masses
 - Cl or Br for high masses

There is no dead time correction nor background removal. The user should always check the calibration for any scientific analysis.

For the peak lists, the separation between organic and inorganic peaks is done according to the following formula:

- Starting from the integer mass (M), the bin interval for the
- inorganic ions: M*1.0003 Δm ... M*1.0003

organic ions: M*1.0003 ... M*1.0003 + Δm

where $\Delta m = 0.2$

For the calculated mass scale, a confidence number is calculated. This number is the procentual amount of counts inside the mass windows compared to the total counts. The mass window is defined as

m*f ± m^p*q, where

 $p = \log(0.3/0.05)/\log(300/12)$

 $q = 0.0.5 / (12^p)$

which gives mass 12 ± 0.05 and mass 300 ± 0.3 . If suitable peaks to establish the scale cannot be found, the confidence number is 0.0% and the mass scale is calculated from the default values.

In the products PDS header there is a label DATA_QUALITY_ID. This is "-1", when the mass scale is calculated by the software. In the future, when real comet dust spectra will be analyzed, the flag may change to inform, that the mass scale is established either by human or more advanced analysis software. When that happens, the product label will contain the description of the new flag values.

The HK data for the spectra and images is given in already calibrated form, without raw values. They can be used to check, if there's some instrument setup reason, why the spectrum signal to noise ratio or peak shape is as it is. The HK values don't contribute anything numerical to the spectrum mass scaling and are for background information only. The same goes with the image data.

It should be pointed out, that an established mass scale is already an interpretation of the data and regardless of the flag, each data user should check the scale.

2.4 Overview of Data Products

2.4.1 General

COSIMA contains 24 target holders, each having three different substrates for dust collection. From data analysis point of view, each substrate has different history. Each substrate can be exposed to dust, heated, imaged with COSISCOPE, and measured and cleaned by ion beam.

The data user should start the data analysis from the substrate history file stored in the substrate subdirectory in the data directory, The history files contain time ordered information from actions taken with the substrate in question. For exposure and storage there is only the time period. For the following products the archive pointer is given:

- time of flight ion spectrum. The main product of COSIMA, taken from a small area from the substrate surface. The preliminary mass scale is automatically generated with the equivalent software as onboard COSIMA for the peak list generation. For the comet phase data, the mass scale may also be established by a human or more advanced analysis software, case by case.
- peak list. The peak list is generated onboard COSIMA for integer mass lines for organic and inorganic masses separately. It may be used for pre-analysis of the grains, when full spectra would be too large to send due to operational and telemetry quota constrains
- scan. The measurement position or some measurement parameter is varied. The product is the total counts from the three possible time/mass ranges. During the scan COSIMA can also generate spectrum or peak data for each scan step value.
- image. The image is a COSISCOPE compressed image take from the whole substrate. The transmitted image may also contain only a subset of the image
- grain list. The COSISCOPE can detect individual dust grains from the substrate surface and provide them as a list with position, size and illumination characteristics.
- heat. The substrate is heated and the heat curve is available as the product.
- clean: The substrate is cleaned by the ion beam.

The relevant calibrated housekeeping data is provided together the data products for background information. They don't contribute anything numerical to the data products calibration.

During the ground calibration phase only few substrates were actively used for instrument calibration. These operations must be anyway used for background information in interpreting data during the comet phase.

Before the comet phase no real science is expected to be available from data.

Geometry information for the COSIMA products is not available. As the substrate exposure will take at least hours, often days, there is no simple way to tell, where the dust particles originate from. The data user should pick the exposure/collect period(s) from the substrate history file and make his/her own judgment. The time the individual spectrum or peak list product is made, has no connection to the time the dust particle is collected.

2.4.2 Software

2.4.2.1 Data processing software

An automatic script will retrieve data from the DDS and store it in an internal database. The housekeeping data will be plotted internally to check the general status of the instrument.

For PSA-compliant level 2 products generation (REFDR), data is retrieved from the internal database. The housekeeping data is calibrated with calibration coefficients stored in the RSDB, resulting in physical units. PDS data products are formed from mass spectra time series, parameter scan, substrate heating, substrate cleaning, COSISCOPE grain lists, COSISCOPE images, and calibrated housekeeping data. Peaks, images, and grain lists will need no additional calibration. In addition, target substrate history will be assembled as ancillary data products.

This software producing level 2 data from level 1b data stored in the internal database will be used only by the data producers and will not be archived.

Transformation of TOF spectra into mass spectra is done automatically with the equivalent software onboard the COSIMA instrument. See chapter 2.3.

2.4.2.2 Scientific analysis software

N/A. Data product files will be either ASCII TABLEs or FITS IMAGEs. For the FITS standard based images the DS9 software is recommend.

2.4.3 Documentation

The COSIMA instrument is extensively described in a paper "COSIMA, a High Resolution Time of Flight Spectrometer for Secondary Ion Mass Spectroscopy of Cometary Dust Particles" by Kissel et.al. [RD-02]. That paper together with this EAICD can be found from the DOCUMENT directory.

2.4.4 Derived and other Data Products

N/A

2.4.5 Ancillary Data Usage

The COSIMA instrument measures "off-line" in the sense that target assemblies are exposed independently of any spacecraft or COSIMA activity. For each target substrate, a list containing substrate history, including exposure time period, heating in the chemistry station, cleaning, analyzing and imaging is provided. The list is formatted as a table and stored in the same directory with the science products obtained from that substrate.

As stated in the 2.4.1, these history files are the starting point of the COSIMA data analysis.

3 Archive Format and Content

3.1 Deliveries and Archive Volume Format

There will be only one dataset available at all times. For all the pre-comet phases, it will be named RO-CAL-COSIMA-3-Vx.y. For the comet phase, the dataset name will be changed to RO-C-COSIMA-3-Vx.y.

For each delivery, the new data is incremented to the old data and the major version number is incremented by one. This scheme is used to make sure, that the data user always have the full substrate history available. The history products are essential in the spectrum interpretation and are the recommed starting point for the data browsing. The following delivery schedule is expected:

dataset ID	coverage	date
RO-CAL-COSIMA-2-V1.0	Ground calibration, commissioning, first cruise phases. No mass scale available	2006
RO-CAL-COSIMA-3-V2.0	adds active checkout data up to PC8	2008
RO-CAL-COSIMA-3-V3.0	adds active checkout data up to hibernation	2010
RO-C-COSIMA-3-V1.0	adds comet approach data	mid 2014
RO-C-COSIMA-3-V2.0	adds close observations data	end 2014
RO-C-COSIMA-3-V3.0	adds comet escort data	mid 2015
RO-C-COSIMA-3-V4.0	adds comet escort data	end 2015
RO-C-COSIMA-3-V5.0	adds comet escort data	mid 2016
RO-C-COSIMA-3-V6.0	adds final data	end 2016

The passive checkouts do not contribute much to the dataset, only one target is taken from the target storage and deposited back. No measurements are made.

The dataset is organized according to tree structure in the illustration 3.1.

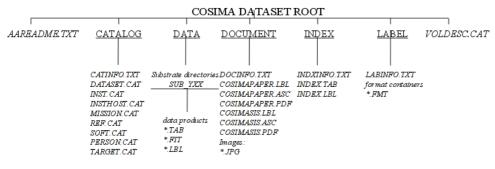


Illustration 3.1:

3.2 Conventions

3.2.1 Data Set ID Formation

Data set ID will be formed according to PDS standards and following the Rosetta Archive Plan (RO-EST-PL-5011). It will have the following components:

• Instrument host: RO

- Target: CAL for pre-flight data set, C for in-flight data set
- Instrument: COS
- Data processing level number, 3.
- Version number

The pre-comet dataset naming is thus starting from "RO-CAL-COSIMA-2-V1.0"

and changed in the comet phase to names starting from "RO-C-COSIMA-3-V1.0"

3.2.2 Data Directory Naming Convention

/DATA directory be divided to subdirectories for each Cosima target substrate. The subdirectory names will be of format SUB_YXX, where Y (1-3) is the substrate position in the target assembly, and XX is target assembly ID numbered from C1 to D8 hexadecimal. For example: SUB_1C1, SUB_2C1, etc. Substrate numbering is also explained in Chapter 4.1

3.2.3 Filenaming Convention COSIMA data products will be named as follows:

- Spectra: CS_YXX_YYYYMMDDThhmmss_SP_Z.TAB, where YXX is substrate code as defined above (chapter 3.2.2), and Z is either 'P' for positive or 'N' for negative ions.
- Peak lists: CS_YXX_YYYYMMDDThhmmss_PK_Z.TAB, where YXX and Z as above.
- Scan: CS_YXX_YYYYMMDDThhmmss_SCAN.TAB, where YXX as above
- Heat: CS_YXX_YYYMMDDThhmmss_HEAT.TAB, where YXX as above
- Cleaning: CS_YXX_YYYYMMDDThhmmss_CLEA.TAB, where YXX as above
- Cosiscope images of substrates: CS_YXX_YYYYMMDDThhmmss_IM_Z.IMG, where YXX as above, and Z is either 'P' for plus side led or 'M' for minus side led illumination.
- Grain lists: CS_YXX_YYYYMMDDThhmmss_GR__.TAB, where YXX as above.
- Housekeeping files: CS_YXX_YYYYMMDDThhmmss_S_HK.TAB (for spectra and peak lists), CS_YXX_YYYYMMDDThhmmss_SCHK (for scan housekeeping), CS_YXX_YYYYMMDDThhmmss_CLHK (for cleaning housekeeping) or CS_YXX_YYYYMMDDThhmmss_G_HK.TAB (for images and grain lists). YXX as above.
- Substrate history (ancillary data): CS_YXX_SUBSTRATE_HIST.TAB

YYYYMMDDThhmmss is the date and time of operation start in UTC.

3.3 Standards Used in Data Product Generation

3.3.1 PDS Standards

PDS standard used is 3.6. All data processing levels mentioned in this document are PSA-compliant, as defined in RO-EST-PL-5011.

3.3.2 Time Standards

Time standard used is UTC. Time format is YYYY-MM-DDThh:mm:ss.

3.3.2.1 Spacecraft Clock Count, OBT

The PDS keywords SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT refer to OBT as defined in [AD 04, Rosetta Time Handling, chapter 4.2]]

The header of the experiment telemetry source packets contains the data acquisition start time in OBT as 32 bit of unit seconds followed by 16 bit of fractional seconds (see section 2.3). OBT = 0 is at 2003-01-01-T00:00:00 UTC. The time resolution is $2-16 = 1.53 \times 10-5$ seconds.

The OBT is represented in the following format:

SPACECRAFT_CLOCK_START/STOP_COUNT =

"<reset number>/<unit seconds>.<fractional seconds>"

The unit seconds and the fractional seconds are separated by the full stop character. Note that this is not a decimal point. The fractional seconds are expressed as multiples of $2-16 = 1.53 \times 10-5$ seconds and count from 0 to $2^{10}-1= 65535$. E.g. in SPACECRAFT_CLOCK_START_COUNT = "1/21983325.392" the 392 fractional seconds correspond to $392 \times 2-16 = 0.00598$ decimal seconds.

The spacecraft clock could be reset during the mission (although this is not planned). This would imply a change of the zero point. The zero point of the OBT will be indicated by pre-pending the reset number (integer starting at 1) and a slash to the unit seconds, i.e. "1/" means OBT = 0 at 2003-01-01T00:00:00 UTC.

Examples:

SPACECRAFT_CLOCK_START_COUNT = "1/21983325.39258" SPACECRAFT_CLOCK_START_COUNT = "1/21983325.392" SPACECRAFT_CLOCK_STOP_COUNT = "1/21983342"

3.3.3 Reference Systems

N/A

3.3.4 Other Applicable Standards

N/A

3.4 Data Validation

Formats will be checked with PSA Validation and Verification Tool.

The instrument data is validated according to the outline of the COSIMA proposal and the COSIMA instrument paper (Kissel et al, to be published in 2006 within the frame of the ROSETTA instrument papers). COSIMA consists of groups in France, Finland and Germany and Cols ins the US, Austria and The Netherlands. The COSIMA laboratory reference model is located at the Max-Planck-Insitut for Solar System Research in Katlenburg-Lindau, Germany. The COSIMA instrument is operated by FMI in Helsinki, Finland and MPS in Lindau, Germany. The reference model is used for calibration and cross-reference measurements of the COSIMA flight model. The flight data will be analysed in a near time frame. Since COSIMA stores the original cometary samples, with this approach interesting samples can be screened again, e.g. with an improved count statistics. The science goals are achieved in the precomet rendevous phase preparation with the reference model laboratory measurements and with the operational scenario of COSIMA in the comet orbiting phase of ROSETTA.

3.5 Content

3.5.1 Volume Set

1 volume will contain 1 COSIMA data set. Data set structure is defined in Chapter 3.1.

3.5.2 Data Set

COSIMA data will form one data set. It will contain time-of-flight spectra, peaks lists, target substrate images, grain lists and target history (ancillary data) obtained after the flight targets were installed in the flying instrument (XM).

The data set will be named according to PDS standards and following the Rosetta Archive Plan (RO-EST-PL-5011). Each component of the name will match the corresponding component of the data set ID.

Data set name components are:

- Instrument host: ROSETTA-ORBITER
- Target: CAL for pre-comet phase, 67P for comet phasedata sets

- Instrument name: COSIMA
- Data processing level, 3
- Version number

Example: "ROSETTA-ORBITER 67P COSIMA 3 V3.0"

3.5.3 Directories

3.5.3.1 Root Directory

General archive description: AAREADME.TXT, VOLDESC.CAT

3.5.3.2 Calibration Directory

N/A

3.5.3.3 Catalog Directory

CATINFO.TXT

MISSION.CAT and INSTHOST.CAT from ESA – Mission and spacecraft descriptions.

INST.CAT – Instrument description

DATASET.CAT – Dataset description

REF.CAT - References

SOFTWARE.CAT - empty for COSIMA datasets.

PERSON.CAT - COSIMA contacts

TARGET.CAT – Target descriptions

3.5.3.4 Index Directory

INDXINFO.TXT, INDEX.LBL and INDEX.TAB

- 3.5.3.5 Browse Directory and Browse Files
- 3.5.3.6 Geometry Directory

N/A

- 3.5.3.7 Software Directory N/A
- 3.5.3.8 Gazetter Directory N/A
- 3.5.3.9 Label Directory LABINFO.TXT

Format containers (*.FMT)

3.5.3.10Document Directory

COSIMASIS: This EAICD with detached labels and images in JPG format. COSIMAPAPER: COSIMA instrument paper with detached labels and images in JPG format

3.5.3.11Extras Directory

N/A

3.5.3.12Data Directory

See chapter 3.2.2.

4 Detailed Interface Specifications

4.1 Structure and Organization Overview

/DATA directory will be divided to sub-directories for each COSIMA target substrate. Names of these sub-directories will follow the scheme defined in chapter 3.2.2.

The target substrate code in the directory name consists of 3 alphanumeric characters. The last two characters represent hexadecimal code of the target substrate. There are 24 target assemblies, numbered C1-D8 (hex). Each assembly holds 3 substrates, resulting in total of 72 substrates. The first character in the code is a number defining the substrate position in the assembly. Possible numbers are 1,2 and 3 for top, middle and low substrate, respectively. Thus directory name SUB_1C1 identifies that the data inside contains measurements of top substrate of target assembly C1. Other directories containing measurements of target assembly C1 are SUB_2C1 and SUB_3C1.

Data products will be stored in sub-directories SUB_XYY. File naming of the data files is described in chapter 3.2.3. Each sub-directory SUB_XYY will also include the history of that substrate. The history contains information about substrate storage and expose periods, cleaning and heating actions, COSISCOPE camera images and grains lists and any spectra taken. The history product contains history from the moment substrates were installed in the COSIMA flight instrument.

4.2 Data Sets, Definition and Content

See chapter 3.5.2.

4.3 Data Product Design

4.3.1 Time-of flight spectrum product

4.3.1.1 General description

COSIMA time-of-flight spectrum product has the following elements:

- Time-of-flight spectrum: event count series in ascii format.
- Event count: number of events in a time bin.
- Mass: calibrated mass for the time bin.

4.3.1.2 Label example

	= PDS3 = "V1.1"
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTER TO DATA OBJECTS */	= FIXED_LENGTH = 30 = 131185 = 112
^SCALE_TABLE ^MASS_SPECTRUM_TABLE	= 113 = 114
PRODUCT_CREATION_TIME PRODUCT_TYPE PROCESSING_LEVEL_ID MISSION_ID MISSION_NAME MISSION_PHASE_NAME INSTRUMENT_HOST_ID	<pre>XAMETERS */ = "CS_2D8_20070927T182348_SP_P.TAB" = "R0-CAL-COSIMA-3-V2.0" = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20070927T182348_SP_P.TAB" = 2008-11-12T09:15:39 = "REFDR" = "3" = "REFDR" = "3" = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "EARTH SWING-BY 2" = "R0" = "ROSETTA-ORBITER"</pre>

INSTRUMENT ID = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "MASS SPECTROMETER" = "SPECTRUM" = "TIME OF FLIGHT MASS SPECTRUM MEASUREMENT" TARGET_NAME = "CALIBRATION" TARGET_TYPE START_TIME STOP_TIME = "CALIBRATION" = 2007-09-27T18:23:48 = 2007-09-27T18:33:53
 SPACECRAFT_CLOCK_START_COUNT
 = "1/0149538196.41251"

 SPACECRAFT_CLOCK_STOP_COUNT
 = "1/0149538801.41245"
 SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE = "N/A" = "FMI" PRODUCER_ID = "JOHAN SILEN" PRODUCER_FULL_NAME PRODUCER INSTITUTION_NAME DATA_QUALITY_ID DATA_QUALITY_DESC = "FINNISH METEOROLOGICAL INSTITUTE" = -1 = "-1 = not checked" DAIA_QUALITY_DESC = "-1 = not check ROSETTA:COSIMA_SUBSTRATE_ID = "2D8" ROSETTA:COSIMA_SUBSTRATE_DESC = "Silver, blank" ROSETTA:COSIMA_SUBSTRATE_X = 5000 ROSETTA:COSIMA_SUBSTRATE_Y = 5000 ROSETTA:COSIMA_SPECTRUM_POL = "POSITIVE" DOCETTA:COSIMA_SPECTRUM_POL = "POSITIVE" = 795091 ROSETTA: COSIMA SPECTRUM SHOTS **OBJECT** = SCALE TABLE = SCALE NAME INTERCHANGE_FORMAT = ASCII ROWS = 1 COLUMNS = 3 = 30 ROW_BYTES = "COSIMA_SPECTRUM_PEAK_SCALE.FMT"
= "COSIMA PEAK LIST MASS SCALE" ^STRUCTURE DESCRIPTION = SCALE TABLE END OBJECT = MASS_SPECTRUM_TABLE = MASS_SPECTRUM **OBJECT** NAME INTERCHANGE_FORMAT = ASCII ROWS = 131072 COLUMNS = 3 ROW BYTES = 30 ^STRUCTURE = "COSIMA_SPECTRUM_DATA.FMT" = "COSIMA TIME OF FLIGHT MASS SPECTRUM" DESCRIPTION END_OBJECT = MASS_SPECTRUM_TABLE

END

COSIMA_SPECTRUM_PEAK_SCALE.FMT

OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= COLUMN = 1 = SCALE_A = ASCII_REAL = 1 = 10 = "F10.2" = "FACTOR A FROM THE TIME TO MASS FUNCTION T = A * SORT(M) + P"</pre>
END_OBJECT OBJECT COLUMN_NUMBER NAME DATA TYPE	T = A * SQRT(M) + B" = COLUMN = COLUMN = 2 = SCALE_B = ASCII REAL
START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT	<pre>= 12 = 10 = "F10.2" = "FACTOR B FROM THE TIME TO MASS FUNCTION T = A * SQRT(M) + B" = COLUMN</pre>
OBJECT	= COLUMN

COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT	= 3 = SCALE_CONFIDENCE = ASCII_REAL = 23 = 5 = "F5.1" = "MASS SCALE CONFIDENCE LEVEL IN PROCENTS" = COLUMN
COSIMA_SPECTRUM	DATA.FMT
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= COLUMN = 1 = INDEX = ASCII_INTEGER = 1 = 6 = "I6" = "TIME OF FLIGHT TIME STEP INDEX.</pre>
END_OBJECT	TIME STEP IS 0.000000001953125 SECONDS" = COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT	<pre>= COLUMN = 2 = MASS_COUNT = ASCII_INTEGER = 8 = 10 = "I10" = "TIME INTEGRAGED MASS COUNT AT THE TIME STEP" = COLUMN</pre>
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= COLUMN = 3 = MASS_NUMBER = ASCII_REAL = 19 = 10 = "F10.5" = "CALIBRATED MASS_NUMBER_AT_THE_TIME_STEP"</pre>
END OBJECT	

END_OBJECT

= COLUMN

4.3.2 Peak list product

4.3.2.1 General Description

COSIMA peak list has the following elements:

- Instrument onboard calculated mass scale.
- Peak list for organic and inorganic masses

4.3.2.2 Label example

PDS_VERSION_ID	= PDS3
LABEL_REVISION_NOTE	= "V1.1"
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTERS TO DATA OBJECTS */	= FIXED_LENGTH = 29 = 446 = 115
^SCALE_TABLE	= 116
^PEAK TABLE	= 117
- /* GENERAL DATA DESCRIPTION PAR	AMETERS */
FILE_NAME	= "CS_2D8_20070927T184705_PK_N.TAB"
DATA SET ID	= "R0-CAL-COSIMA-3-V2.0"
DATA_SET_NAME	= "ROSETTA-ORBITER CAL COSIMA 3 V2.0"
PRODUCT_ID	= "CS_2D8_20070927T184705_PK_N.TAB"
PRODUCT_CREATION_TIME	= 2008-11-12T09:15:40

PRODUCT TYPE = "REFDR" PROCESSING_LEVEL_ID = "3" = "ROSETTA" MISSION ID MISSION_NAME = "INTERNATIONAL ROSETTA MISSION" = "EARTH SWING-BY 2" MISSION_PHASE_NAME INSTRUMENT_HOST_ID INSTRUMENT_HOST_NAME = "R0" = "ROSETTA-ORBITER" INSTRUMENT_HOST_NAME INSTRUMENT_ID INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" = "MASS SPECTROMETER" = "SPECTRUM" = "TIME OF FLIGHT MASS SPECTRUM MEASUREMENT" TARGET_NAME = "CALIBRATION" = "CALIBRATION" TARGET_TYPE START_TIME STOP_TIME = 2007-09-27T18:47:05 = 2007-09-27T18:57:10 SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT SC_SUN_POSITION_VECTOR = "1/0149539593.41237" = "1/0149540198.41230" = "N/A" SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE = "N/A" = "N/A" PRODUCER_ID = "FMI" = "JOHAN SILEN" PRODUCER_FULL_NAME = "FINNISH METEOROLOGICAL INSTITUTE" PRODUCER_INSTITUTION_NAME DATA_QUALITY_ID = -1 = "-1 = not checked" DATA_QUALITY_DESC = "2D8" ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA: COSIMA_SUBSTRATE_ID ROSETTA: COSIMA_SUBSTRATE_DESC ROSETTA: COSIMA_SUBSTRATE_X ROSETTA: COSIMA_SUBSTRATE_Y ROSETTA: COSIMA_SPECTRUM_POL ROSETTA: COSIMA_SPECTRUM_SHOTS = "Silver, blank" = 5000 = 5000 = "NEGATIVE" = 828459 **OBJECT** = SCALE TABLE NAME = SCALE INTERCHANGE_FORMAT = ASCII ROWS = 1 COLUMNS = 3 ROW_BYTES = 29 ^STRUCTURE = "COSIMA SPECTRUM PEAK SCALE.FMT" = "COSIMA PEAK LIST MASS SCALE" DESCRIPTION = SCALE TABLE END OBJECT = PEAK_TABLE = PEAK_LIST **OBJECT** NAME INTERCHANGE FORMAT = ASCII= 330 ROWS COLUMNS = 3 ROW BYTES = 29 = "COSIMA_SPECTRUM_PEAKS.FMT" = "COSIMA_SPECTRUM_PEAK_LIST" ^STRUCTURE DESCRIPTION = PEAK_TABLE END_OBJECT

END

COSIMA_SPECTRUM_PEAK_SCALE.FMT

OBJECT COLUMN_NUMBER NAME	= COLUMN = 1 = SCALE_A
DATA_TYPE	= ASCII_REAL
START_BYTE	= 1
BYTES	= 10
FORMAT	= "F10.2"
DESCRIPTION	= "FACTOR A FROM THE TIME TO MASS FUNCTION
	T = A * SQRT(M) + B''
END_OBJECT	= COLUMN
OBJĒCT	= COLUMN
COLUMN NUMBER	= 2
NAME	= SCALE B
DATA TYPE	= ASCII REAL
_	
START_BYTE	= 12

BYTES FORMAT DESCRIPTION END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT	= = = = = = = = =	10 "F10.2" "FACTOR B FROM THE TIME TO MASS FUNCTION T = A * SQRT(M) + B" COLUMN 3 SCALE_CONFIDENCE ASCII_REAL 23 5 "F5.1" "MASS SCALE CONFIDENCE LEVEL IN PROCENTS"
COSIMA_SPECTRUM	_PEAKS.FM1	[
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT	= = = = =	5 "I5"
DESCRIPTION END_OBJECT OBJECT COLUMN NUMBER	=	"INTEGER MASS. IF HIGHER THAN 300, THEN THE INTERVAL FROM PREVIOUS VALUE TO CURRENT VALUE" COLUMN COLUMN 2
NAME DATA_TYPE START_BYTE BYTES FORMAT	= = =	INORGANIC_COUNT ASCII_INTEGER 7 10 "I10"
DESCRIPTION END_OBJECT	=	"INORGANIC PEAK HEIGHT COUNT. IF MASS INDEX IS HIGHER THAN 300, THEN THE SUM OF ORGANIC AND INORGANIC COUNTS FOR THE INTERVAL FROM PREVIOUS INDEX" COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT	= = = =	COLUMN 3 ORGANIC_COUNT ASCII_INTEGER 18 10 "I10"
DESCRIPTION		"ORGANIC PEAK HEIGHT COUNT. IF MASS INDEX IS HIGHER THAN 300, THEN THE SUM OF INORGANIC AND ORGANIC COUNTS FOR THE INTERVAL FROM PREVIOUS INDEX"
END_OBJECT	= COLUMN	

4.3.3 Time-of-flight spectrum housekeeping data product

4.3.3.1 General description

With each measured time-of-flight spectrum or peak list, housekeeping data is associated. The housekeeping product has the following elements:

- Voltages, currents and temperatures of the instrument during spectrum measurement
- TDC unit timing parameters
- TDC unit calibration results

Detailed contents of the elements are described in the label example below.

4.3.3.2 Label example

PDS_VERSION_ID	=	PDS3
LABEL_REVISION_NOTE	=	"V1.1"

/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES = FIXED LENGTH = 897 FILE_RECORDS = 11 LABEL RECORDS = 5 /* POINTER TO DATA OBJECT */ ^HK_TABLE = 6 ^TDC_TIMING_TABLE
^TDC_CALIBRATION_TABLE = 7 = 8 /* GENERAL DATA DESCRIPTION PARAMETERS */ = "CS_2D8_20070927T182348_S_HK.TAB" FILE_NAME = "R0-CAL-COSIMA-3-V2.0" DATA_SET_ID DATA_SET_NAME PRODUCT_ID = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20070927T182348_S_HK" $= 200\overline{8} - 11 - 12T09 : 15 : 38$ PRODUCT_CREATION_TIME PRODUCT_TYPE = "ANCDR" PROCESSING_LEVEL_ID = "6" = "ROSETTA" MISSION_ID = "INTERNATIONAL ROSETTA MISSION" MISSION_NAME MISSION PHASE_NAME = "EARTH SWING-BY 2" INSTRUMENT_HOST_ID INSTRUMENT_HOST_NAME INSTRUMENT_ID = "R0" = "ROSETTA-ORBITER" = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "MASS SPECTROMETER" = "SPECTRUM" = "TIME OF FLIGHT MASS SPECTRUM MEASUREMENT" = "CALIBRATION" TARGET NAME TARGET TYPE = "CALIBRATION" START_TIME STOP_TIME = 2007-09-27T18:23:48 = 2007-09-27T18:33:53 SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT = "1/0149538196.41251" = "1/0149538801.41245" SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE = "N/A" = "N/A" = "FMI" PRODUCER_ID PRODUCER FULL NAME = "JOHAN SILEN" PRODUCER_INSTITUTION_NAME = "FINNISH METEOROLOGICAL INSTITUTE" DATA_QUALITY_ID DATA_QUALITY_DESC = -1 = "-1 = not checked" DATA_QUALITT_DESC ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA:COSIMA_SUBSTRATE_DESC ROSETTA:COSIMA_SUBSTRATE_X ROSETTA:COSIMA_SUBSTRATE_Y ROSETTA:COSIMA_SPECTRUM_POL = "2D8" = "Silver, blank" = 5000 = 5000= "POSITIVE" ROSETTA: COSIMA SPECTRUM SHOTS = 795091 **OBJECT** = HK_TABLE = HOUSEKEEPING NAME INTERCHANGE_FORMAT = ASCII ROWS = 1 COLUMNS = 112 ROW_BYTES = 897 ^STRUCTURE = "COSIMA_SPECTRUM_HK.FMT" = "COSIMA SPECTRUM HOUSEKEEPING INFORMATION, DESCRIPTION INCLUDING VOLTAGES, CURRENTS AND TEMPERATUES" END OBJECT = HK TABLE = TDC_TIMING_TABLE
= TDC_TIMING **OBJECT** NAME INTERCHANGE_FORMAT = ASCII= 1 ROWS = 7 COLUMNS ROW_BYTES = 897 = "COSIMA_SPECTRUM_TDC_TIMING.FMT"
= "TIME TO DIGITAL_UNIT TIMING PARAMETERS" ^STRUCTURE DESCRIPTION END_OBJECT = TDC_TIMING_TABLE

= TDC_CALIBRATION_TABLE
= TDC_CALIBRATION
= ASCII
= 4 **OBJECT** NAME INTERCHANGE_FORMAT ROWS = 4 = 5 = 897 = "COSIMA_SPECTRUM_TDC_CALIB.FMT" = "TIME TO DIGITAL UNIT CALIBRATION RESULTS" = TDC_CALIBRATION_TABLE COLUMNS ROW_BYTES ^STRUCTURE DESCRIPTION END_OBJECT

END

COSIMA_SPECTRUM_HK.FMT:

NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = 1 = "T_REF_MIN" = ASCII_REAL = 1 = 7 = "DEGREE KELVIN" = 999.9 = "F7.1" = "T_REF TEMPERATURE MINIMUM AT REFERENCE POINT" = COLUMN</pre>
COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION FND_OBJECT	= 9 = 7 = "DEGREE KELVIN" = 999.9 = "F7.1" = "T_REF TEMPERATURE MEAN AT REFERENCE POINT" = COLUMN
MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= COLUMN = 3 = "T_REF_MAX" = ASCII_REAL = 17 = 7 = "DEGREE KELVIN" = 999.9 = "F7.1" = "T_REF TEMPERATURE MAXIMUM AT REFERENCE POINT" = COLUMN</pre>
DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = 4 = "T_REF_STD" = ASCII_REAL = 25 = 7 = "DEGREE KELVIN" = 999.9 = "F7.1" = "T_REF TEMPERATURE STANDARD DEVIATION AT REFERENCE POINT" = COLUMN</pre>
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= COLUMN = 5 = "T_TDC_MIN" = ASCII_REAL = 33 = 7 = "DEGREE KELVIN" = 999.9 = "F7.1" = "T_TDC TIME TO DIGITAL UNIT DELAY LINE TEMPERATURE</pre>

MINIMUM" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 6 NAME = "T TDC MEAN" = ASCII_REAL DATA TYPE START_BYTE = 41 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_TDC TIME TO DIGITAL UNIT DELAY LINE TEMPERATURE DESCRIPTION MĒAN" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 7 = "T TDC MAX" NAME DATA_TYPE = ASCII_REAL START_BYTE = 49 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT DESCRIPTION = "T_TDC TIME TO DIGITAL UNIT DELAY LINE TEMPERATURE MAXIMUM" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 8 = "T_TDC_STD" NAME DATA_TYPE = ASCII_REAL $\mathsf{START}_\mathsf{BYTE}$ = 57 = 7 BYTES = "DEGREE KELVIN" UNIT = 999.9 MISSING_CONSTANT = "F7.1" FORMAT = "T_TDC TIME TO DIGITAL UNIT DELAY LINE TEMPERATURE DESCRIPTION STANDARD DEVIATION" END_OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 9 = "T_PIBS_MIN" NAME DATA TYPE = ASCII_REAL START_BYTE = 65 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T PIBS PRIMARY ION BEAM SYSTEM TEMPERATURE MINIMUM" DESCRIPTION = COLUMNEND_OBJECT = COLUMN OBJECT COLUMN_NUMBER = 10 = "T_PIBS_MEAN" NAME DATA TYPE = ASCII_REAL START_BYTE = 73 BYTES = 7 = "DEGREE KELVIN" UNIT = 999.9 MISSING_CONSTANT = "F7.1" FORMAT = "T PIBS PRIMARY ION BEAM SYSTEM TEMPERATURE MEAN" DESCRIPTION = COLUMNEND_OBJECT OBJECT = COLUMN = 11 = "T_PIBS_MAX" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 81 BYTES = 7 UNIT = "DEGREE KELVIN" = 999.9 MISSING_CONSTANT

= "F7.1" FORMAT DESCRIPTION = "T_PIBS PRIMARY ION BEAM SYSTEM TEMPERATURE MAXIMUM" END OBJECT = COLUMN**OBJECT** = COLUMN COLUMN_NUMBER = 12 "T PIBS STD" NAME = = ASCII_REAL DATA_TYPE START_BYTE = 89 BYTES = 7 = "DEGREE KELVIN" UNIT = 999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "T_PIBS PRIMARY ION BEAM SYSTEM TEMPERATURE STANDARD DEVIATION" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 13 = "T LVC MIN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 97 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_LVC LOW VOLTAGE CONVERTER TEMPERATURE MINIMUM" DESCRIPTION = COLUMNEND_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 14 = "T_LVC_MEAN" NAME DATA_TYPE = ASCII_REAL $\mathsf{START}_\mathsf{BYTE}$ = 105 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_LVC LOW VOLTAGE CONVERTER TEMPERATURE MEAN" DESCRIPTION END_OBJECT = COLUMN**OBJECT** = COLUMN COLUMN_NUMBER = 15 = "T LVC_MAX" NAME DATA TYPE = ASCII REAL START_BYTE = 113 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_LVC LOW VOLTAGE CONVERTER TEMPERATURE MAXIMUM" DESCRIPTION = COLUMNEND OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 16 = "T_LVC_STD" NAME DATA_TYPE = ASCII_REAL START BYTE = 121 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_LVC LOW VOLTAGE CONVERTER TEMPERATURE STANDARD DESCRIPTION DEVIATION" END_OBJECT = COLUMN **OBJECT** = COLUMN = 17 = "T_CPU_MIN" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 129 BYTES = 7 UNIT = "DEGREE KELVIN" MISSING_CONSTANT = 999.9

= "F7.1" FORMAT = "T_CPU PROCESSOR TEMPERATURE MINIMUM" DESCRIPTION END OBJECT = COLUMN4BER = 10 = "T_CPU_MEA. = ASCII_REAL = 137 = 7 → "DEGREE KE OBJECT = COLUMN COLUMN_NUMBER = "T CPU MEAN" NAME DATA_TYPE START_BYTE BYTES UNIT = "DEGREE KELVIN" MISSING_CONSTANT = 999.9 FORMAT = "F7.1" DESCRIPTION = "T_CPU PROCESSOR TEMPERATURE MEAN" ND OBJECT = COLUMN END_OBJECT = COLUMN**OBJECT** = COLUMN = 19 = "T_CPU_MAX" = ASCII_REAL = 145 - 7 COLUMN_NUMBER NAME DATA_TYPE START_BYTE - <u>-</u> = 7 BYTES = "DEGREE KELVIN" UNIT = "DEGREE KELVIN" MISSING_CONSTANT = 999.9 FORMAT = "F7.1" DESCRIPTION = "T_CPU PROCESSOR TEMPERATURE MAXIMUM" UNIT END_OBJECT = COLUMN OBJECT = COLUMN = 20 = "T_CPU_STD" = ASCII_REAL = 153 COLUMN_NUMBER NAME DATA_TYPE START_BYTE = 7 BYTES UNIT = "DEGREE KELVIN" MISSING_CONSTANT = 999.9 FORMAT = "F7.1" DESCRIPTION = "T_CPU PROCESSOR TEMPERATURE STANDARD DEVIATION" ND_OBJECT - COLUMN END_OBJECT $= CO\overline{L}UMN$ = COLUMN OBJECT = 21 = "T_HVC_MIN" = ASCII_REAL = 161 COLUMN_NUMBER NAME DATA_TYPE START_BYTE = 7 BYTES UNIT = "DEGRE MISSING_CONSTANT = 999.9 FORMAT = "F7.1" DESCRIPTION = "T_HVC = "DEGREE KELVIN" UNIT = "T_HVC MOTHERBOARD TEMPERATURE MINIMUM" END OBJECT = COLUMNOBJECT = COLUMN = 22 = "T_HVC_MEAN" = ASCII_REAL = 169 COLUMN_NUMBER NAME DATA_TYPE START_BYTE = 7 BYTES = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_HVC MOTHERBOARD TEMPERATURE MEAN" DESCRIPTION END_OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 23 NAME = "T HVC MAX" DATA_TYPE = ASCII_REAL START_BYTE = 177 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_HVC MOTHERBOARD TEMPERATURE MAXIMUM" DESCRIPTION

END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 24 = "T_HVC_STD" NAME DATA TYPE = ASCII_REAL START_BYTE = 185 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T_HVC MOTHERBOARD TEMPERATURE STANDARD DEVIATION" DESCRIPTION $= CO\overline{L}UMN$ END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 25 = "V_EL1_MIN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 193 = 7 = "VOLT" BYTES UNIT MISSING_CONSTANT = 99999.9= "F7.1" FORMAT = "V_EL1 EXTRACTION LENS 1 VOLTAGE MINIMUM, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN = 26 = "V_EL1_MEAN" COLUMN_NUMBER NAME DATA TYPE = ASCII_REAL = 201 START_BYTE BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" = "V EL1 EXTRACTION LENS 1 VOLTAGE MEAN, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 27 = "V EL1 MAX" NAME DATA_TYPE = ASCII_REAL START BYTE = 209 BYTES = 7 = "V0LT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_EL1 EXTRACTION LENS 1 VOLTAGE MAXIMUM, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 28 = "V_EL1_STD" NAME DATA_TYPE = ASCII_REAL START BYTE = 217 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_EL1 EXTRACTION LENS 1 VOLTAGE STANDARD DEVIATION, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN = 29 = "V_TOF1_MIN" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 225 BYTES = 7 UNIT = "VOLT" = 99999.9 MISSING_CONSTANT

= "F7.1" FORMAT DESCRIPTION = "V_TOF1 HIGH VOLTAGE CONVERTER 1 VOLTAGE MINIMUM, IN THE TIME-OF-FLIGHT SECTION" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 30 = "V_TOF1_MEAN" NAME DATA TYPE = ASCII REAL START_BYTE = 233 BYTES = 7 UNIT = "V0LT" = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "V TOF1 HIGH VOLTAGE CONVERTER 1 VOLTAGE MEAN, IN THE TIME-OF-FLIGHT SECTION" END OBJECT = COLUMN OBJECT = COLUMN = 31 = "V_TOF1_MAX" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 241 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION "V TOF1 HIGH VOLTAGE CONVERTER 1 VOLTAGE MAXIMUM, = IN THE TIME-OF-FLIGHT SECTION" END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 32 = "V TOF1 STD" NAME = ASCII_REAL DATA_TYPE START BYTE = 249 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION = "V_TOF1 HIGH VOLTAGE CONVERTER 1 VOLTAGE STANDARD DEVIATION, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 33 = "V_TOF2_MIN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 257 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "V_TOF2 HIGH VOLTAGE CONVERTER 2 VOLTAGE MINIMUM, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 34 "V TOF2_MEAN" NAME = DATA TYPE = ASCII_REAL START_BYTE = 265 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" "V TOF2 HIGH VOLTAGE CONVERTER 2 VOLTAGE MEAN, DESCRIPTION = IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 35 NAME = "V TOF2 MAX" DATA_TYPE = ASCII_REAL

= 273 START_BYTE BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "V TOF2 HIGH VOLTAGE CONVERTER 2 VOLTAGE MAXIMUM, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN = 36 = "V_TOF2_STD" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 281 BYTES = 7 "VOLT" UNIT = MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V TOF2 HIGH VOLTAGE CONVERTER 2 VOLTAGE STANDARD DEVIATION, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 37 "V DT MIN" NAME = = ASCII_REAL DATA_TYPE START_BYTE = 289 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING CONSTANT = "F7.1" FORMAT = "V_DT DRIFT TUBE VOLTAGE MINIMUM, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 38 = "V_DT_MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 297 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V DT DRIFT TUBE VOLTAGE MEAN, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN **OBJECT** = 39 = "V DT MAX" COLUMN_NUMBER NAME DATA TYPE = ASCII REAL START_BYTE = 305 BYTES = 7 = "V0LT" UNIT = 99999.9 = "F7.1" MISSING_CONSTANT FORMAT DESCRIPTION = "V DT DRIFT TUBE VOLTAGE MAXIMUM, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 40 "V DT STD" NAME = DATA_TYPE = ASCII_REAL START BYTE = 313 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 "F7.1" FORMAT = DESCRIPTION = "V DT DRIFT TUBE VOLTAGE STANDARD DEVIATION, IN THE TIME-OF-FLIGHT SECTION" END OBJECT = COLUMN

OBJECT = COLUMN COLUMN_NUMBER = 41 NAME = "V PA MIN" = ASCII_REAL DATA TYPE START_BYTE = 321 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" = "V PA POST-ACCELERATION VOLTAGE MINIMUM. DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN NUMBER = 42 = "V PA MEAN" NAME DATA_TYPE = ASCII REAL START_BYTE = 329 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT "F7.1" FORMAT = DESCRIPTION = "V_PA POST-ACCELERATION VOLTAGE MEAN, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 43 = "V PA_MAX" NAMF DATA TYPE = ASCII REAL START_BYTE = 337 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V_PA POST-ACCELERATION VOLTAGE MAXIMUM, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 44 = "V PA STD" NAME DATA TYPE = ASCII_REAL START_BYTE = 345 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION "V PA POST-ACCELERATION VOLTAGE STANDARD DEVIATION, = IN THE TIME-OF-FLIGHT SECTION" END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 45 "V DET MIN" NAME = DATA_TYPE START_BYTE = ASCII_REAL = 353 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V_DET ION DETECTOR VOLTAGE MINIMUM, DESCRIPTION IN THE TIME-OF-FLIGHT SECTION" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 46 = "V_DET_MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 361 BYTES = 7 = "VOLT" UNIT MISSING CONSTANT = 99999.9 = "F7.1" FORMAT

DESCRIPTION	<pre>= "V_DET ION DETECTOR VOLTAGE MEAN,</pre>
END_OBJECT	IN THE TIME-OF-FLIGHT SECTION" = COLUMN
NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT	= 369 - 7
-	
UNIT MISSING_CONSTANT FORMAT	
END_OBJECT	= COLUMN
MISSING CONSTANT	<pre>= / = "V0LT" = 99999.9 = "F7.1" = "V_DX_TOF X-DIRECTION DEFLECTION VOLTAGE MINIMUM,</pre>
END_OBJECT	IN THE TIME-OF-FLIGHT SECTION" = COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= COLUMN = 50 = "V_DX_TOF_MEAN" = ASCII_REAL = 393 = 7 = "VOLT" = 99999.9 = "F7.1" = "V DX_TOF X-DIRECTION DEFLECTION VOLTAGE MEAN, IN THE TIME-OF-FLIGHT SECTION"</pre>
END_OBJECT	= COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= "F7.1" = "V_DX_TOF X-DIRECTION DEFLECTION VOLTAGE MAXIMUM,</pre>
END_OBJECT	= COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE	= COLUMN = 52 = "V_DX_TOF_STD" = ASCII_REAL = 409

BYTES = 7 = "VOLT" UNIT MISSING CONSTANT = 99999.9FORMAT = "F7.1" DESCRIPTION = "V_DX_TOF X-DIRECTION DEFLECTION VOLTAGE STANDARD DEVIATION, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 53 = "V_DY_TOF_MIN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 417 BYTES = 7 = "VOLT" UNIT = 99999.9MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "V_DY_TOF Y-DIRECTION DEFLECTION VOLTAGE MINIMUM, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN = 54 = "V_DY_TOF_MEAN" COLUMN_NUMBER NAME DATA TYPE = ASCII_REAL $\mathsf{START}_\mathsf{BYTE}$ = 425 BYTES = 7 "VOLT" UNIT = MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION "V DY TOF Y-DIRECTION DEFLECTION VOLTAGE MEAN. = IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN OBJECT COLUMN NUMBER = 55 "V_DY_TOF_MAX" NAME = = ASCII_REAL DATA_TYPE START_BYTE = 433 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9= "F7.1" FORMAT DESCRIPTION = "V DY TOF Y-DIRECTION DEFLECTION VOLTAGE MAXIMUM, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 56 = "V_DY_TOF_STD" NAME DATA TYPE = ASCII REAL START_BYTE = 441 BYTES = 7 UNIT = "VOLT" MISSING_CONSTANT = 99999.9= "F7.1" FORMAT = "V_DY_TOF Y-DIRECTION DEFLECTION VOLTAGE STANDARD DESCRIPTION DEVIATION, IN THE TIME-OF-FLIGHT SECTION" END_OBJECT = COLUMN = COLUMN **OBJECT** = 57 = "V_L1_MIN" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 449BYTES = 7 UNIT = "VOLT" = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT "V L1 LENS 1 VOLTAGE MINIMUM, DESCRIPTION = IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN **OBJECT** = COLUMN

COLUMN_NUMBER = 58 = "V_L1_MEAN" NAME DATA TYPE = ASCII_REAL START_BYTE = 457 = 7 BYTES UNIT = "V0LT" MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_L1 LENS 1 VOLTAGE MEAN, IN THE PRIMARY ION BEAM SYSTEM" DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 59 = "V L1 MAX" NAME = ASCII_REAL DATA TYPE START_BYTE = 465 BYTES = 7 UNIT = "V0LT" MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_L1 LENS 1 VOLTAGE MAXIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 60 = "V_L1_STD" NAME = ASCII_REAL DATA_TYPE START BYTE = 473 BYTES = 7 MISSING_CONSTANT = 999999.9 FORMAT = "F7.1" DESCRIPTION = "V_L1 LENS 1 VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 61 = "V_L2_MIN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 481 BYTES = 7 = "V0LT" UNIT MISSING_CONSTANT = 999999.9 FORMAT = "F7.1" = "F7.1" FORMAT = "V_L2 LENS 2 VOLTAGE MINIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 62 NAME = "V_L2_MEAN" DATA TYPE = ASCII_REAL START_BYTE = 489 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V L2 LENS 2 VOLTAGE MEAN, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN = COLUMN 0BJECT COLUMN NUMBER = 63 NAME = "V_L2_MAX" DATA_TYPE = ASCII_REAL START_BYTE = 497 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" = "V_L2 LENS 2 VOLTAGE MAXIMUM, DESCRIPTION

IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 64 NAME = "V L2 STD" DATA TYPE = ASCII_REAL START_BYTE = 505 BYTES = 7 = "V0LT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" = "V L2 LENS 2 VOLTAGE STANDARD DEVIATION, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 65 = "V_BS1_MIN" NAME = ASCII_REAL DATA_TYPE START_BYTE = 513 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING CONSTANT = "F7.1" FORMAT DESCRIPTION = "V_BS1 BEAM SWITCH 1 VOLTAGE MINIMUM, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 66 = "V_BS1_MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 521 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V_BS1 BEAM SWITCH 1 VOLTAGE MEAN, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" = COLUMN END_OBJECT = COLUMN **OBJECT** COLUMN_NUMBER = 67 = "V_BS1_MAX" NAME DATA TYPE = ASCII_REAL START_BYTE = 529 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION = "V BS1 BEAM SWITCH 1 VOLTAGE MAXIMUM, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 68 = "V BS1 STD" NAME DATA_TYPE = ASCII_REAL START_BYTE = 537 = 7 BYTES = "VOLT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "V BS1 BEAM SWITCH 1 VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 69 = "V_BS2_MIN" NAMF DATA TYPE = ASCII REAL START_BYTE = 545 BYTES = 7

= "V0LT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V BS2 BEAM SWITCH 2 VOLTAGE MINIMUM, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN NUMBER = 70 = "V BS2 MEAN" NAME DATA_TYPE = ASCII REAL START_BYTE = 553 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 "F7.1" FORMAT = = "V_BS2 BEAM SWITCH 2 VOLTAGE MEAN, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 71 = "V_BS2_MAX" NAME DATA TYPE = ASCII REAL START_BYTE = 561 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V BS2 BEAM SWITCH 2 VOLTAGE MAXIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 72 "V_BS2_STD" NAME = DATA TYPE = ASCII_REAL START_BYTE = 569 BYTES = 7 UNIT = "V0LT" MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION "V BS2 BEAM SWITCH 2 VOLTAGE STANDARD DEVIATION, = IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 73 "V CB1 MIN" NAME = = ASCII_REAL DATA_TYPE START_BYTE = 577 = 7 BYTES = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_CB1 BEAM CHOPPER POSITIVE VOLTAGE MINIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 74 = "V_CB1_MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 585 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_CB1 BEAM CHOPPER POSITIVE VOLTAGE MEAN, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 75

= "V_CB1_MAX" NAME = ASCII_REAL DATA_TYPE START_BYTE = 593 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION = "V_CB1 BEAM CHOPPER POSITIVE VOLTAGE MAXIMUM, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 76 = "V_CB1_STD" NAME DATA TYPE = ASCII_REAL START_BYTE = 601 BYTES = 7 = "V0LT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_CB1 BEAM CHOPPER POSITIVE VOLTAGE STANDARD DESCRIPTION DEVIATION, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN = COLUMN OBJECT = 77 = "V_CB2_MIN" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 609BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" = "V CB2 BEAM CHOPPER NEGATIVE VOLTAGE MINIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 78 NAME = "V CB2 MEAN" DATA_TYPE = ASCII_REAL START_BYTE = 617 BYTES = 7 = "V0LT" UNTT = 99999.9 MISSING CONSTANT = "F7.1" FORMAT DESCRIPTION = "V_CB2 BEAM CHOPPER NEGATIVE VOLTAGE MEAN, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 79 = "V_CB2_MAX" NAME DATA_TYPE START_BYTE = ASCII_REAL = 625 BYTES = 7 = "VOLT" UNIT MISSING CONSTANT = 99999.9 FORMAT = "F7.1" = "V_CB2 BEAM CHOPPER NEGATIVE VOLTAGE MAXIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 80 "V CB2 STD" NAME = DATA TYPE = ASCII_REAL START_BYTE = 633 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION = "V CB2 BEAM CHOPPER NEGATIVE VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION BEAM SYSTEM"

END_OBJECT = COLUMN **OBJECT** = COLUMN = 81 = "V_DX_PIBS_MIN" COLUMN_NUMBER NAME DATA TYPE = ASCII REAL START_BYTE = 641 BYTES = 7 = "VOLT" UNIT = 99999.9MISSING_CONSTANT = "F7.1" FORMAT = "V_DX_PIBS X-DIRECTION DEFLECTION VOLTAGE MINIMUM, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 82 NAME = "V_DX_PIBS_MEAN" = ASCII_REAL DATA TYPE START_BYTE = 649 BYTES = 7 = "V0LT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V DX PIBS X-DIRECTION DEFLECTION VOLTAGE MEAN, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 83 = "V DX PIBS MAX" NAME = ASCII_REAL DATA_TYPE START_BYTE = 657 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING CONSTANT = "F7.1" FORMAT DESCRIPTION = "V DX PIBS X-DIRECTION DEFLECTION VOLTAGE MAXIMUM, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 84 = "V_DX_PIBS_STD" NAME DATA TYPE = ASCII REAL START_BYTE = 665 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V DX PIBS X-DIRECTION DEFLECTION VOLTAGE STANDARD DESCRIPTION DEVIATION, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN = COLUMN **OBJECT** = 85
= "V_DY_PIBS_MIN" COLUMN_NUMBER NAME DATA TYPE = ASCII REAL START_BYTE = 673 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION "V DY PIBS Y-DIRECTION DEFLECTION VOLTAGE MINIMUM, = IN THE PRIMARY ION BEAM SYSTEM" END OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 86 = "V DY PIBS MEAN" NAME DATA_TYPE = ASCII_REAL START BYTE = 681 BYTES = 7 = "VOLT" UNIT

= 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V DY PIBS Y-DIRECTION DEFLECTION VOLTAGE MEAN, DESCRIPTION IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 87 = "V DY PIBS MAX" NAME DATA TYPE = ASCII_REAL START_BYTE = 689 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION = "V DY PIBS Y-DIRECTION DEFLECTION VOLTAGE MAXIMUM. IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 88 = "V_DY_PIBS_STD" NAME = ASCII_REAL DATA_TYPE START BYTE = 697 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION = "V_DY_PIBS Y-DIRECTION DEFLECTION VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION BEAM SYSTEM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 89 = "V_TIP_MIN" NAME DATA TYPE = ASCII REAL START_BYTE = 705 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "V_TIP TIP VOLTAGE MINIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN **OBJECT** = COLUMN = 90 = "V_TIP_MEAN" COLUMN_NUMBER NAME DATA TYPE = ASCII_REAL START_BYTE = 713 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V TIP TIP VOLTAGE MEAN, IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 91 = "V_TIP_MAX" = ASCII_REAL NAME DATA_TYPE START_BYTE = 721 BYTES = 7 = "VOLT" UNTT = 99999.9 MISSING CONSTANT FORMAT = "F7.1" = "V_TIP TIP VOLTAGE MAXIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE' END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN NUMBER = 92 = "V_TIP_STD" NAME

= ASCII_REAL DATA TYPE START_BYTE = 729 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V TIP TIP VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION SOURCE END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 93 = "C TIP MIN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 737 BYTES = 7 = "MICROAMPERE" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION = "C_TIP TIP CURRENT MINIMUM, IN THE PRIMARY ION SOURCE END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 94 = "C_TIP_MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 745 BYTES = 7 UNIT = "MICROAMPERE" MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION = "C_TIP TIP CURRENT MEAN, IN THE PRIMARY ION SOURCE" = COLUMN END_OBJECT OBJECT = COLUMN = 95 = "C_TIP_MAX" COLUMN_NUMBER NAME DATA TYPE = ASCII_REAL START_BYTE = 753 BYTES = 7 = "MICROAMPERE" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "C TIP TIP CURRENT MAXIMUM, IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 96 = "C TIP STD" NAME DATA_TYPE = ASCII_REAL START_BYTE = 761 BYTES = 7 = "MICROAMPERE" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT DESCRIPTION = "C_TIP TIP VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION SOURCE" = COLUMN END_OBJECT **OBJECT** = COLUMN = 97 COLUMN_NUMBER = "V_EXT_MIN" NAMF DATA TYPE = ASCII REAL START_BYTE = 769 BYTES = 7 - "VOLT" UNIT = 99999.9MISSING_CONSTANT = "F7.1" FORMAT = "V_EXT EXTRACTOR VOLTAGE MINIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN

= COLUMN **OBJECT** COLUMN NUMBER = 98 = "V EXT MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 777 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "V_EXT EXTRACTOR VOLTAGE MEAN, IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 99 = "V_EXT_MAX" NAME DATA_TYPE = ASCII_REAL START_BYTE = 785 = 7 = "VOLT" BYTES UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V_EXT EXTRACTOR VOLTAGE MAXIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 100 = "V EXT STD" NAME DATA TYPE = ASCII_REAL START_BYTE = 793 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" "V EXT EXTRACTOR VOLTAGE STANDARD DEVIATION, DESCRIPTION = IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 101 = "C EXT MIN" NAME DATA_TYPE = ASCII_REAL START BYTE = 801 BYTES = 7 = "MICROAMPERE" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "C_EXT EXTRACTOR CURRENT MINIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 102 = "C_EXT_MEAN" NAME DATA_TYPE = ASCII_REAL START BYTE = 809 BYTES = 7 = "MICROAMPERE" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "C_EXT EXTRACTOR CURRENT MEAN, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN **OBJECT** = COLUMN = 103 = "C_EXT_MAX" COLUMN_NUMBER NAME DATA TYPE = ASCII_REAL START_BYTE = 817 BYTES = 7 UNIT = "MICROAMPERE" = 99999.9 MISSING_CONSTANT

= "F7.1" FORMAT = "C_EXT EXTRACTOR CURRENT MAXIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 104 = "C_EXT_STD" NAME DATA TYPE = ASCII REAL START_BYTE = 825 BYTES = 7 UNIT = "MICROAMPERE" = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "C_EXT EXTRACTOR CURRENT STANDARD DEVIATION, DESCRIPTION IN THE PRIMARY ION SOURCE" END OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 105 = "V_HEATER_MIN" NAME = ASCII_REAL DATA TYPE START_BYTE = 833 BYTES = 7 = "V0LT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V HEATER HEATER VOLTAGE MINIMUM, IN THE PRIMARY ION SOURCE' END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 106 = "V_HEATER_MEAN" NAME DATA_TYPE = ASCII_REAL START_BYTE = 841 BYTES = 7 = "VOLT" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION = "V_HEATER HEATER VOLTAGE MEAN, IN THE PRIMARY ION SOURCE" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 107 = "V_HEATER_MAX" NAME DATA_TYPE = ASCII_REAL START_BYTE = 849 BYTES = 7 = "V0LT" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "V_HEATER HEATER VOLTAGE MAXIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 108 = "V_HEATER_STD" NAME DATA TYPE = ASCII_REAL START_BYTE = 857 BYTES = 7 = "VOLT" UNIT MISSING_CONSTANT = 99999.9 FORMAT = "F7.1" DESCRIPTION = "V_HEATER HEATER VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 109 NAME = "C HEATER MIN" DATA_TYPE = ASCII_REAL

START_BYTE = 865 BYTES = 7 = "AMPERE" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "C HEATER HEATER CURRENT MINIMUM, IN THE PRIMARY ION SOURCE END_OBJECT = COLUMN **OBJECT** = COLUMN = 110 = "C_HEATER_MEAN" COLUMN_NUMBER NAME = ASCII_REAL DATA TYPE START_BYTE = 873 BYTES = 7 = "AMPERE" UNIT = 99999.9 MISSING_CONSTANT FORMAT = "F7.1" DESCRIPTION = "C_HEATER HEATER CURRENT MEAN, IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 111 = "C HEATER MAX" NAME = ASCII_REAL DATA_TYPE START_BYTE = 881 BYTES = 7 = "AMPERE" UNIT = 99999.9 MISSING_CONSTANT = "F7.1" FORMAT = "C_HEATER HEATER CURRENT MAXIMUM, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 112 = "C_HEATER_STD" NAME DATA_TYPE = ASCII_REAL START_BYTE = 889 BYTES = 7 = "AMPERE" UNIT MISSING_CONSTANT = 99999.9 = "F7.1" FORMAT = "C HEATER HEATER CURRENT STANDARD DEVIATION, DESCRIPTION IN THE PRIMARY ION SOURCE" END_OBJECT = COLUMN

COSIMA SPECTRUM TDC TIMING.FMT:

OBJECT	<pre>= COLUMN</pre>
COLUMN_NUMBER	= 1
NAME	= CHOPPER_ON
DATA_TYPE	= ASCII_REAL
START_BYTE	= 1
BYTES	= 9
UNIT	= "NANOSECOND"
FORMAT	= "F9.2"
DESCRIPTION	= "TIME TO DIGITAL UNIT CHOPPER ON TIME"
END_OBJECT	<pre>= COLUMN</pre>
OBJECT	= COLUMN
COLUMN_NUMBER	= 2
NAME	= CHOPPER_OFF
DATA_TYPE	= ASCII_REAL
START_BYTE	= 11
BYTES	= 9
UNIT	= "NANOSECOND"
FORMAT	= "F9.2"
DESCRIPTION	<pre>= "TIME TO DIGITAL UNIT CHOPPER OFF TIME"</pre>
END_OBJECT	= COLUMN
OBJECT	= COLUMN
COLUMN_NUMBER	= 3
NAME	= BUNCHER_1_ON
DATA_TYPE	= ASCII_REAL

START_BYTE	<pre>= 21</pre>
BYTES	= 9
UNIT	= "NANOSECOND"
FORMAT	= "F9.2"
DESCRIPTION	= "TIME TO DIGITAL UNIT BUNCHER 1 ON TIME"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
COLUMN_NUMBER	= 4
NAME	= BUNCHER_2_ON
DATA_TYPE	= ASCII_REAL
START_BYTE	= 31
BYTES	= 9
UNIT	= "NANOSECOND"
FORMAT	= "F9.2"
DESCRIPTION	<pre>= "TIME TO DIGITAL UNIT BUNCHER 2 ON TIME"</pre>
END_OBJECT	= COLUMN
OBJECT	= COLUMN
COLUMN_NUMBER NAME DATA TYPE	= 5 = BUNCHER_3_ON
START_BYTE BYTES	= ASCII_REAL = 41 = 9
UNIT FORMAT DESCRIPTION	<pre>= "NANOSECOND" = "F9.2" = "TIME TO DIGITAL UNIT BUNCHER 3 ON TIME"</pre>
END_OBJECT	= COLUMN
OBJECT	= COLUMN
COLUMN_NUMBER	= 6
NAME	= PIBS_OFF
DATA_TYPE	= ASCII_REAL
START_BYTE	= 51
BYTES	= 9
UNIT	= "NANOSECOND"
FORMAT	= "F9.2"
DESCRIPTION END OBJECT	<pre>= "TIME TO DIGITAL UNIT PRIMARY ION BEAM SYSTEM OFF TIME" = COLUMN</pre>
OBJECT	= COLUMN
COLUMN_NUMBER	= 7
NAME	= TOF OFF
DATA_TYPE	= ASCII_REAL
START_BYTE	= 61
BYTES	= 9
UNIT	= "NANOSECOND"
FORMAT	= "F9.2"
DESCRIPTION <u>END_OBJECT</u>	<pre>= "TIME TO DIGITAL UNIT TIME OF FLIGHT UNIT OFF TIME" = COLUMN</pre>

COSIMA_SPECTRUM_TDC_CALIB.FMT:

OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT FORMAT DESCRIPTION	<pre>= COLUMN = 1 = TDC_CALIBRATION_OFFSET = ASCII_INTEGER = 1 = 11 = "SECOND" = "I11" = "OFFSET IN SECONDS FROM THE START OF THE SPECTRUM MEASUREMENT"</pre>
END_OBJECT OBJECT	= COLUMN = COLUMN
COLUMN NUMBER	= 2
NAME	= TDC DELAY LINE
DATA TYPE	= ASCII INTEGER
START_BYTE	= 13
BYTES	= 3
FORMAT	= "I3"
DESCRIPTION	= "TIME TO DIGITAL UNIT DELAY LINE DAC CONTROL VALUE"
END OBJECT	= COLUMN
OBJĒCT	= COLUMN
COLUMN_NUMBER	= 3

NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= TDC_CALIBRATION_MEAN = ASCII_INTEGER = 17 = 4 = "I4" = "I4" = "TIME TO DIGITAL UNIT CHANNEL CALIBRATION MEAN"</pre>
END OBJECT	= COLUMN
OBJĒCT	= COLUMN
COLUMN_NUMBER	= 4
NAME	<pre>= TDC_CALIBRATION_STD</pre>
DATA_TYPE	= ASCII_INTEGER
START_BYTE	= 22
BYTES	= 4
FORMAT	
DESCRIPTION	= "TIME TO DIGITAL UNIT CHANNEL CALIBRATION STANTARD DEVIATION"
END OBJECT	= COLUMN
OBJECT	= COLUMN
COLUMN NUMBER	= 5
NAME	<pre>= TDC_CHANNEL_DIFFERENCE</pre>
DATA_TYPE	= ASCII_INTEGER
START_BYTE	= 27
BYTES	= 79
ITEMS	= 16
ITEM_BYTES	= 4
ITEM_OFFSET	= 5
FORMAT	
DESCRIPTION	= "TIME TO DIGITAL UNIT CHANNEL DIFFERENCE FROM THE MEAN"
END_OBJECT	= COLUMN

4.3.4 Scan data product

4.3.4.1 General description

With each scan step, the following elements are given:

- total counts in the three time/mass ranges
- number of ion shots
- total counts
- substrate position
- time/mass range limits
- varied parameters, step values

Detailed contents of the elements are described in the label example below.

4.3.4.2Label example

PDS_VERSION_ID	= PDS3
LABEL_REVISION_NOTE	= "V1.1"
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTER TO DATA OBJECTS */ ^SCAN_TABLE	= FIXED_LENGTH = 153 = 19 = 18 = 19
/* GENERAL DATA DESCRIPTION PAP FILE_NAME DATA_SET_ID DATA_SET_NAME PRODUCT_ID PRODUCT_CREATION_TIME PRODUCT_TYPE PROCESSING_LEVEL_ID MISSION_ID MISSION_NAME	<pre>AMETERS */ = "CS_2D8_20100508T104500_SCAN.TAB" = "R0-CAL-COSIMA-3-V3.0" = "R0SETTA-ORBITER CAL COSIMA 3 V3.0" = "CS_2D8_20100508T104500_SCAN" = 2010-08-28T15:13:27 = "REFDR" = "3" = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION"</pre>

MISSION PHASE NAME = "CRUISE 5" = "R0" INSTRUMENT_HOST_ID INSTRUMENT_HOST_NAME INSTRUMENT_ID = "ROSETTA-ORBITER" = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "MASS SPECTROMETER" = "SPECTRUM" = "TIME OF FLIGHT MASS SPECTRUM MEASUREMENT" = "CALIBRATION" TARGET NAME TARGET TYPE = "CALIBRATION" START_TIME = 2010-05-08T10:45:00 STOP_TIME = 2010-05-08T10:59:19 SPACECRAFT_CLOCK_START_COUNT = "1/0231936259.28265" = "1/0231937118.28261" SPACECRAFT_CLOCK_STOP_COUNT SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE = "N/A" SUB_SPACECRAFT_LONGITUDE = "FMI" PRODUCER_ID = "JOHAN SILEN" PRODUCER_FULL_NAME PRODUCER_INSTITUTION_NAME = "FINNISH METEOROLOGICAL INSTITUTE" DATA_QUALITY_ID DATA_QUALITY_DESC = -1 = "-1 = not checked" = "2D8" = "Silver, blank" ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA:COSIMA_SUBSTRATE_DESC = "NEGATIVE" ROSETTA:COSIMA SPECTRUM POL **OBJECT** = SCAN TABLE = SCAN DATA NAME INTERCHANGE_FORMAT = ASCII= ROWS 1 = 17 COLUMNS ROW_BYTES = 153 = "COSIMA_SCAN_DATA.FMT" = "COSIMA SCAN DATA" ^STRUCTURE DESCRIPTION = SCAN_TABLE END OBJECT END COSIMA_SCAN_DATA.FMT **OBJECT** = COLUMN COLUMN_NUMBER = 1 NAME = WINDOW 1 COUNT DATA TYPE = ASCII_INTEGER START_BYTE = 1 BYTES = 11 MISSING_CONSTANT = -999999999 = "I11" FORMAT DESCRIPTION = "COUNT OF THE EVENTS INSIDE THE FIRST TIME(MASS) WINDOW" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 2 = WINDOW_2_COUNT NAME DATA TYPE = ASCII INTEGER START_BYTE = 13 BYTES = 11 MISSING_CONSTANT = -999999999 = "I11" FORMAT = "COUNT OF THE EVENTS DESCRIPTION INSIDE THE SECOND TIME(MASS) WINDOW" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 3 NAME = WINDOW_3_COUNT = ASCII_INTEGER DATA TYPE START_BYTE = 25 BYTES = 11

= -999999999

MISSING CONSTANT

= "I11" FORMAT DESCRIPTION = "COUNT OF THE EVENTS INSIDE THE THIRD TIME(MASS) WINDOW" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 4 = SPECTRUM SHOTS NAME DATA TYPE = ASCII_INTEGER START_BYTE = 37 BYTES = 11 MISSING_CONSTANT = -999999999 = "I11" FORMAT DESCRIPTION = "NUMBER OF INDIUM ION SHOTS USED" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 5 = TOTAL_COUNT NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 49 BYTES = 11 MISSING_CONSTANT = -999999999 = "I11" FORMAT = "TOTAL COUNT OF EVENTS DURING ACQUISITION" DESCRIPTION = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 6 NAME = SUBSTRATE X DATA TYPE = ASCII_INTEGER START_BYTE = 61 BYTES = 5 = "MICROMETER" UNIT MISSING_CONSTANT = -9999 FORMAT = "I5" = "SUBSTRATE X-COORDINATE IN MICROMETERS, DESCRIPTION ZERO IS AT LEFT" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 7 = SUBSTRATE Y NAME DATA_TYPE = ASCII_INTEGER START BYTE = 67 BYTES = 5 = "MICROMETER" UNIT MISSING_CONSTANT = -9999 = "I5" FORMAT DESCRIPTION = "SUBSTRATE Y-COORDINATE IN MICROMETERS, ZERO IS AT BOTTOM" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 8 = WINDOW_1_START NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 73 = 6 BYTES MISSING_CONSTANT = -1 = "I6" FORMAT DESCRIPTION = "START BIN FOR THE FIRST TIME(MASS) WINDOW" END_OBJECT = COLUMN = COLUMN 0BJECT COLUMN NUMBER = 9 NAME = WINDOW_1_STOP DATA_TYPE = ASCII_INTEGER START_BYTE = 80 BYTES = 6 = -1 = "I6" MISSING_CONSTANT FORMAT = "STOP BIN FOR THE FIRST TIME(MASS) WINDOW" DESCRIPTION = COLUMN END_OBJECT

OBJECT = COLUMN COLUMN NUMBER = 10 NAME = WINDOW_2_START DATA_TYPE = ASCII_INTEGER START_BYTE = 87 BYTES = 6 MISSING_CONSTANT = -1 = "I6" FORMAT = "START BIN FOR THE SECOND TIME(MASS) WINDOW" DESCRIPTION = COLUMN END OBJECT = COLUMN OBJECT COLUMN_NUMBER = 11 = WINDOW 2 STOP NAME DATA TYPE = ASCII_INTEGER START_BYTE = 94 BYTES = 6 MISSING_CONSTANT = -1 = "I6" FORMAT = "STOP BIN FOR THE SECOND TIME(MASS) WINDOW" DESCRIPTION = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 12 = WINDOW_3_START NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 101 BYTES = 6 MISSING CONSTANT = -1 = "I6" FORMAT = "START BIN FOR THE THIRD TIME(MASS) WINDOW" DESCRIPTION END_OBJECT = COLUMN = COLUMN OBJECT COLUMN NUMBER = 13 = WINDOW 3 STOP NAMF DATA_TYPE = ASCII_INTEGER START_BYTE = 108 BYTES = 6 MISSING_CONSTANT = -1 = "I6" FORMAT DESCRIPTION = "STOP BIN FOR THE THIRD TIME(MASS) WINDOW" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 14 NAME = OUTER_PARAMETER DATA TYPE = CHARACTER = 116 START_BYTE BYTES = 10 "UNKNOWN" MISSING_CONSTANT = = "A10" FORMAT DESCRIPTION "THE VARIED PARAMETER DURING THE SCAN. = THE POSSIBLE VALUES ARE TIME OF FLIGHT 1 VOLTAGE TIME OF FLIGHT 2 VOLTAGE T0F1 T0F2 TIME OF FLIGHT 3 VOLTAGE T0F3 POST ACCELERATION VOLTAGE PA DET DETECTOR VOLTAGE TOF X DEFLECTOR VOLTAGE DX_TOF TOF Y DEFLECTOR VOLTAGE DY_TOF L1 PIBS LENS 1 VOLTAGE PIBS LENS 2 VOLTAGE L2 BEAM SWITCH 1 VOLTAGE BS1 BS2 BEAM SWITCH 2 VOLTAGE СВ CHOPPER BUNCHER VOLTAGE DX_PIBS PIBS X DEFLECTOR VOLTAGE PIBS Y DEFLECTOR VOLTAGE DY_PIBS тмū х TMU X AXIS MOVEMENT TMU Y AXIS MOVEMENT TMU_Y TMU CLEAN X TMU X AXIS MOVEMENT FOR CLEANING TMU_CLEAN_Y TMU Y AXIS MOVEMENT

END_OBJECT	FOR CLEANING NOP NO OPERATION" = COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES MISSING_CONSTANT FORMAT DESCRIPTION END_OBJECT	<pre>= COLUMN = 15 = OUTER_STEP = ASCII_INTEGER = 128 = 5 = -9999 = "15" = "RAW VALUE OF THE PARAMETER STEP, SEE MATCHING HK DATA FOR CALIBRATED VALUE" = COLUMN</pre>
BYTES MISSING CONSTANT	 "A10" "THE VARIED PARAMETER DURING THE SCAN. THE POSSIBLE VALUES ARE TOF1 TIME OF FLIGHT 1 VOLTAGE TOF2 TIME OF FLIGHT 2 VOLTAGE TOF3 TIME OF FLIGHT 3 VOLTAGE PA POST ACCELERATION VOLTAGE DET DETECTOR VOLTAGE DY_TOF TOF X DEFLECTOR VOLTAGE L1 PIBS LENS 1 VOLTAGE L2 PIBS LENS 2 VOLTAGE BS1 BEAM SWITCH 1 VOLTAGE BS2 BEAM SWITCH 1 VOLTAGE CB CHOPPER BUNCHER VOLTAGE CB CHOPPER BUNCHER VOLTAGE DY_PIBS PIBS X DEFLECTOR VOLTAGE DY_PIBS PIBS Y DEFLECTOR VOLTAGE TMU_X TMU X AXIS MOVEMENT TMU_CLEAN_X TMU X AXIS MOVEMENT FOR CLEANING
END_OBJECT	NOP NO OPERATION" = COLUMN
DATA_TYPE	<pre>= COLUMN = 17 = INNER_STEP = ASCII_INTEGER = 147 = 5 = -9999 = "15" = "RAW VALUE OF THE PARAMETER STEP, SEE MATCHING HK DATA FOR CALIBRATED VALUE" = COLUMN</pre>

4.3.5 Scan housekeeping data product

4.3.5.1 General description

With each scan step, housekeeping data is associated. The housekeeping product has the following elements:

- Voltages, currents and temperatures means of the instrument during spectrum measurement
- TDC unit timing parameters
- TDC unit calibration results

Detailed contents of the elements are described in the label example below.

4.3.5.2Label example PDS VERSION ID = PDS3 LABEL REVISION NOTE = "V1.1" /* FILE FORMAT */ RECORD TYPE = FIXED LENGTH RECORD BYTES = 897 FILE_RECORDS 10 _ LABEL_RECORDS /* POINTER TO DATA OBJECT */ 5 ^HK_TABLE 6 = ^TDC_TIMING_TABLE ^TDC_CALIBRATION_TABLE = 7 8 = /* GENERAL DATA DESCRIPTION PARAMETERS */ FILE NAME = "CS_2D8_20100508T104500_SCHK.TAB" DATA_SET_ID DATA_SET_NAME = "R0-CAL-COSIMA-3-V3.0" = "ROSETTA-ORBITER CAL COSIMA 3 V3.0" PRODUCT_ID = "CS_2D8_20100508T104500_SCHK" PRODUCT_CREATION_TIME = 2010-08-28T15:13:27 PRODUCT_TYPE PROCESSING_LEVEL_ID = "ANCDR" = "6" = "ROSETTA" MISSION_ID = "INTERNATIONAL ROSETTA MISSION" MISSION NAME MISSION PHASE NAME = "CRUISE 5" INSTRUMENT_HOST_ID = "R0" INSTRUMENT_HOST_NAME INSTRUMENT_ID = "ROSETTA-ORBITER" = "COSIMA" INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "COMETARY SECONDARY ION MASS ANALYZER" = "MASS SPECTROMETER" = "SPECTRUM" = "TIME OF FLIGHT MASS SPECTRUM MEASUREMENT" = "CALIBRATION" TARGET_NAME TARGET_NAME TARGET_TYPE START_TIME STOP_TIME = "CALIBRATION" = 2010 - 05 - 08T10 : 45 : 00= 2010-05-08T10:59:19 SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT = "1/0231936259.28265" = "1/0231937118.28261" SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR = "N/A" = "N/A" = "N/A" SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE = "N/A" = "N/A" = "FMI" PRODUCER ID PRODUCER_FULL_NAME = "JOHAN SILEN" PRODUCER_INSTITUTION_NAME = "FINNISH METEOROLOGICAL INSTITUTE" DATA_QUALITY_ID DATA_QUALITY_DESC = -1 = "-1 = not checked" ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA:COSIMA_SUBSTRATE_DESC ROSETTA:COSIMA_SPECTRUM_POL = "2D8" = "Silver, blank" = "NEGATIVE" **OBJECT** = HK_TABLE = HOUSEKEEPING NAME INTERCHANGE_FORMAT = ASCII ROWS = 1 COLUMNS = 112 ROW BYTES = 897 ^STRUCTURE = "COSIMA_SPECTRUM_HK.FMT" DESCRIPTION = "COSIMA SPECTRUM HOUSEKEEPING INFORMATION, INCLUDING VOLTAGES, CURRENTS AND TEMPERATUES" END OBJECT = HK TABLE = TDC_TIMING_TABLE = TDC_TIMING **OBJECT** NAME INTERCHANGE FORMAT = ASCIIROWS = 1 COLUMNS = 7 ROW_BYTES = 897

^STRUCTURE DESCRIPTION END_OBJECT	<pre>= "COSIMA_SPECTRUM_TDC_TIMING.FMT" = "TIME TO DIGITAL UNIT TIMING PARAMETERS" = TDC_TIMING_TABLE</pre>
OBJECT NAME INTERCHANGE_FORMAT ROWS COLUMNS ROW_BYTES ^STRUCTURE DESCRIPTION END_OBJECT END	<pre>= TDC_CALIBRATION_TABLE = TDC_CALIBRATION = ASCII = 3 = 5 = 897 = "COSIMA_SPECTRUM_TDC_CALIB.FMT" = "TIME TO DIGITAL UNIT CALIBRATION RESULTS" = TDC_CALIBRATION_TABLE</pre>

4.3.6 Heating data product

4.3.6.1 General description

The substrate heating curve is given

Detailed contents of the elements are described in the label example below.

4.3.6.2Label example

PDS VERSION ID	= PDS3
PDS_VERSION_ID LABEL REVISION NOTE	= "V1.1"
/* FILE FORMAT */	
RECORD_TYPE	= FIXED_LENGTH = 25
	= 137
LABEL_RECORDS	= 125
/* POINTER TO DATA OBJECTS */	
	= 126
^HEATING_TABLE	= 127
/* GENERAL DATA DESCRIPTION PAR	AMETEDC */
TIE NAME	AMETERS */ = "CS_2D8_20090930T051206_HEAT.TAB" = "R0-CAL-COSIMA-3-V2.0" = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20090930T051206_HEAT" = 2010-07-18T09:23:10 = "REFDR"
DATA SET TO	- "PO_CAL_COSTMA_3_V2_0"
DATA_SET_ID	$= \text{"ROSETTA_ORBITER CAL COSTMA 3 V2 0"}$
	- "CS 2D8 20000030T051206 HEAT"
PRODUCT CREATION TIME	$= 2010_{-}07_{-}18T00_{-}23.10$
PRODUCT TYPE	= "REEDB"
PROCESSING LEVEL ID	= "3"
MISSION ID	= "ROSETTA"
MISSION_NAME	= "INTERNATIONAL ROSETTA MISSION"
MISSION_PHASE_NAME	= "EARTH SWING-BY 3"
INSTRUMENT_HOST_ID	<pre>= "3" = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "EARTH SWING-BY 3" = "RO" = "ROSETTA-ORBITER" = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" = "CAMETARY SECONDARY ION MASS ANALYZER" = "CHEMISTRY" = "CHEMISTRY" = "CALIBRATION" = "CALIBRATION"</pre>
INSTRUMENT_HOST_NAME	<pre>= "ROSETTA-ORBITER"</pre>
INSTRUMENT_ID	= "COSIMA"
INSTRUMENT_NAME	<pre>= "COMETARY SECONDARY ION MASS ANALYZER"</pre>
INSTRUMENT_TYPE	= "MASS SPECTROMETER"
INSTRUMENT_MODE_ID	= "CHEMISTRY"
INSTRUMENT_MODE_DESC	<pre>= "SUBSTRATE HEATING"</pre>
TARGET_NAME	= "CALIBRATION"
STOP_TIME	= 2009-09-30T05:22:10
SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT	= ""
SPACECRAFT_CLUCK_STUP_COUNT	
	= "N/A"
SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR	= "N/A" = "N/A"
SPACECRAFT ALTITUDE	= N/A
SUB SPACECRAFT LATITUDE	= "N/A"
	= N/A
PRODUCER ID	= "FMI"
PRODUCER FULL NAME	= "10HAN_STLEN"
PRODUCER_INSTITUTION_NAME	= "FINNISH METEOROLOGICAL INSTITUTE"
DATA_QUALITY_DESC	= -1 = "-1 = not checked"
ROSETTA:COSIMA SUBSTRATE ID	= "2D8"
ROSETTA:COSIMA_SUBSTRATE_DESC	= "Silver, blank"

OBJECT NAME INTERCHANGE_FORMAT ROWS COLUMNS ROW_BYTES ^STRUCTURE DESCRIPTION END_OBJECT	<pre>= HEATING_SETUP_TABLE = HEATING_SETUP = ASCII = 1 = 25 = "COSIMA_HEATING_SETUP.FMT" = "COSIMA_SUBSTRATE HEATING_SETUP" = HEATING_SETUP_TABLE</pre>
OBJECT	<pre>= HEATING_TABLE</pre>
NAME	= HEATING_POINTS
INTERCHANGE_FORMAT	= ASCII
ROWS	= 12
COLUMNS	= 4
ROW_BYTES	= 25
^STRUCTURE	= "COSIMA_HEATING_DATA.FMT"
DESCRIPTION	= "COSIMA_SUBSTRATE HEATING_DATA POINTS"
END_OBJECT	= HEATING_TABLE

```
END
```

COSIMA_HEATING_SETUP.FMT OBJECT = COLUMN COLUMN_NUMBER = 1 = HEAT_TIME = ASCII_INT = 1 NAME DATA_TYPE START_BYTE = ASCII_INTEGER SIAKI_BIIL BYTES = 11 MISSING_CONSTANT = -9999999999 INITT = "SECOND" = "I11" FORMAT = "HEATING TIME IN SECONDS" DESCRIPTION END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 2 = HEAT_LEVEL NAME DATA_TYPE = ASCIT_INTEGER START_BYTE = 13 BYTES = 1 MISSING_CONSTANT = 9 FORMAT = "I1" = "HEAT_SETUP DESCRIPTION 0 = 66 C77 C 1 = 2 = 86 C3 = 94 C4 = 104 C5 = 113 C6 = 122 C7 = 132 C" END_OBJECT = COLUMN COSIMA_HEATING_DATA.FMT = COLUMN = 1 = TMU_2_TEMPERATURE = ASCII_REAL OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES = 1 = 5 = 999.9 MISSING_CONSTANT = "KELVIN" UNIT = "F5.1" FORMAT = "T TMU2 TARGET MANIPULATOR TEMPERATURE DESCRIPTION AT THE CHEMISTRY(HEATING) STATION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 2 = TMU_1_TEMPERATURE = ASCII_REAL NAME DATA_TYPE START_BYTE = 7

BYTES MISSING_CONSTANT UNIT FORMAT DESCRIPTION END_OBJECT	<pre>= 5 = 999.9 = "KELVIN" = "F5.1" = "T_TMU1 TARGET MANIPULATOR TEMPERATURE AT THE SUBSTRATE STORAGE" = COLUMN</pre>
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES MISSING_CONSTANT UNIT FORMAT DESCRIPTION	<pre>= 13 = 5 = 99999 = "KELVIN" = "I5" = "RAW T_TMU2 TARGET MANIPULATOR TEMPERATURE AT THE CHEMISTRY(HEATING) STATION"</pre>
END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES MISSING_CONSTANT UNIT FORMAT DESCRIPTION END_OBJECT	<pre>= COLUMN = COLUMN = 4 = TMU_1_RAW_TEMPERATURE = ASCII_REAL = 19 = 5 = 99999 = "KELVIN" = "I5" = "RAW T_TMU1 TARGET MANIPULATOR TEMPERATURE AT THE SUBSTRATE STORAGE" = COLUMN</pre>

4.3.7 Cleaning data product

4.3.7.1 General description

The cleaning product contains the following elements:

- time used
- emitter tip current housekeeping data

Detailed contents of the elements are described in the label example below.

Label example

	= PDS3 = "V1.1"
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTER TO DATA OBJECTS */ ^CLEANING_TABLE	= FIXED_LENGTH = 45 = 131185 = 112 = 113
/* GENERAL DATA DESCRIPTION PAR FILE_NAME DATA_SET_ID DATA_SET_NAME PRODUCT_ID PRODUCT_CREATION_TIME PRODUCT_TYPE PROCESSING_LEVEL_ID MISSION_ID MISSION_NAME MISSION_PHASE_NAME INSTRUMENT_HOST_ID INSTRUMENT_HOST_NAME	AMETERS */ = "CS_2D8_20070927T182348_CLEA.TAB" = "RO-CAL-COSIMA-3-V2.0" = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20070927T182348_CLEA.TAB" = 2008-11-12T09:15:39 = "REFDR" = "3" = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "EARTH SWING-BY 2" = "RO" = "ROSETTA-ORBITER"

INSTRUMENT ID = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "MASS SPECTROMETER" = "CLEANING" = "SUBSTRATE CLEANING WITH ION BEAM" TARGET_NAME TARGET_TYPE START_TIME STOP_TIME = "CALIBRATION" = "CALIBRATION" = 2007-09-27T18:23:48 = 2007-09-27T18:33:53 SPACECRAFT_CLOCK_START_COUNT = "1/0149538196.41251" SPACECRAFT_CLOCK_STOP_COUNT = "1/0149538801.41245" SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE = "N/A" = "FMI" PRODUCER_ID = "JOHAN SILEN" PRODUCER_FULL_NAME PRODUCER_INSTITUTION_NAME DATA_QUALITY_ID DATA_QUALITY_DESC = "FINNISH METEOROLOGICAL INSTITUTE" = -1 = "-1 = not checked" DATA_QUALITY_DESC = -1 = NOT CHECK ROSETTA:COSIMA_SUBSTRATE_ID = "2D8" ROSETTA:COSIMA_SUBSTRATE_DESC = "Silver, blank" ROSETTA:COSIMA_SUBSTRATE_X = 5000 ROSETTA:COSIMA_SUBSTRATE_Y = 5000 = CLEANING_TABLE **OBJECT** = CLEANING NAME INTERCHANGE FORMAT = ASCII ROWS = 1 COLUMNS = 5 ROW_BYTES = 45 ^STRUCTURE = "COSIMA_CLEANING.FMT" = "COSIMA SUBSTRATE CLEANING" DESCRIPTION END_OBJECT = CLEANING_TABLE

END

COSIMA CLEANING.FMT

OBJECT	= COLUMN
OBJECT COLUMN_NUMBER	= 1
NAME DATA_TYPE START BYTE	= CLEANING_TIME
DATA_TYPE	= ASCII_INTEGER
START_BYTE	= 1
BYTES	= 11
MISSING CONSTANT	= 99999999999
UNIT	= "SECOND"
FORMAT	= "I11"
DESCRIPTION	<pre>= 1 = 99999999999 = "SECOND" = "I11" = "SUBSTRATE CLEANIG TIME WITH INDIUM BEAM" = COLUMN</pre>
END OBJECT	= COLUMN
-	
OBJECT	= COLUMN
COLUMN_NUMBER	= 2
NAME	= "C TIP MIN"
DATA TYPE	= ASCII REAL
NAME DATA_TYPE START_BYTE	= 13
BYTES	= 7 = "MICROAMPERE"
UNIT	= "MICROAMPERE"
MISSING_CONSTANT	= 99999.9
FORMAT	= "F7.1"
DESCRIPTION	= "C TIP TIP CURRENT MINIMUM,
	= "F7.1" = "C_TIP TIP CURRENT MINIMUM, IN THE PRIMARY ION SOURCE"
END OBJECT	= COLUMN
-	
OBJECT	= COLUMN
COLUMN NUMBER	= 3
NAME	= "C TIP MEAN"
NAME DATA_TYPE	= ASCII REAL
START BYTE	= 21
BYTES	= 7
UNIT	= 7 = "MICROAMPERE"
MISSING_CONSTANT	= 99999.9
FORMAT	= "F7.1"

DESCRIPTION	= "C_TIP TIP CURRENT MEAN, IN THE PRIMARY ION SOURCE"
END_OBJECT	= COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= COLUMN = 4 = "C_TIP_MAX" = ASCII_REAL = 29 = 7 = "MICROAMPERE" = 99999.9 = "F7.1" = "C_TIP TIP CURRENT MAXIMUM, IN_THE PRIMARY ION SOURCE"</pre>
END_OBJECT	= COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= COLUMN = 5 = "C_TIP_STD" = ASCII_REAL = 37 = 7 = "MICROAMPERE" = 99999.9 = "F7.1" = "C_TIP TIP VOLTAGE STANDARD DEVIATION, IN THE PRIMARY ION SOURCE"</pre>
END_OBJECT	= COLUMN

4.3.8 Cleaning housekeeping data product

4.3.8.1 General description

With each cleaning operationhousekeeping data is associated. The housekeeping product has the following elements:

• Voltages, currents and temperatures of the instrument during spectrum measurement

Detailed contents of the elements are described in the label example below.

4.3.8.2Label example

PDS_VERSION_ID LABEL_REVISION_NOTE	= PDS3 = "V1.1"
RECORD_BYTES	= FIXED_LENGTH = 897 = 11 = 5 = 6
/* GENERAL DATA DESCRIPTION PAR	AMETERS */
	- "CC 200 20070027T102240 CLUK TAD"
DATA_SET_ID	= CS_2D8_200709271182348_CLHK.TAB = "R0-CAL-COSIMA-3-V2.0" = "R0SETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20070927T182348_CLHK" = 2008-11-12T09:15:38 = "ANCDP"
DATA_SET_NAME	= "ROSELIA-ORBITER CAL COSIMA 3 V2.0"
PRODUCT_ID	= "(S_2D8_200/092/1182348_CLHK" = 2008_11_12T00.15.28
PRODUCT_CREATION_TIME PRODUCT TYPE	= 2008-11-12109:15:58 = "ANCDR"
PROCESSING_LEVEL_ID	= "6"
MISSION ID	= "BOSETTA"
MISSION NAME	= "INTERNATIONAL ROSETTA MISSION"
MISSION_PHASE_NAME	= "EARTH SWING-BY 2"
INSTRUMENT_HOST_ID	= "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "EARTH SWING-BY 2" = "RO" = "ROSETTA-ORBITER"
INSTRUMENT_ID	= "COSIMA"
INSTRUMENT_NAME	<pre>= "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" = "MASS SPECTROMETER"</pre>
INSTRUMENT_TYPE	= "MASS SPECTROMETER"
INSTRUMENT_MODE_ID	<pre>= "CLEANING" = "SUBSTRATE CLEANING WITH ION BEAM"</pre>
INSTRUMENT_MODE_DESC TARGET NAME	= SUBSTRATE CLEANING WITH ION BEAM = "CALIBRATION"
TARGET TYPE	= "CALIBRATION"

START_TIME STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE PRODUCER_ID PRODUCER_ID PRODUCER_INSTITUTION_NAME DATA_QUALITY_ID DATA_QUALITY_ID DATA_QUALITY_DESC ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA:COSIMA_SUBSTRATE_X ROSETTA:COSIMA_SUBSTRATE_X	<pre>= 2007-09-27T18:23:48 = 2007-09-27T18:33:53 = "1/0149538196.41251" = "1/0149538801.41245" = "N/A" = "INA" = "INA" = "INA" = "INA" = "FMI" = "JOHAN SILEN" = "FINNISH METEOROLOGICAL INSTITUTE" = -1 = "-1 = not checked" = "2D8" = "Silver, blank" = 5000</pre>
OBJECT NAME INTERCHANGE_FORMAT ROWS COLUMNS ROW_BYTES ^STRUCTURE DESCRIPTION	<pre>= HK_TABLE = HOUSEKEEPING = ASCII = 1 = 112 = 897 = "COSIMA_SPECTRUM_HK.FMT" = "COSIMA_SPECTRUM_HOUSEKEEPING INFORMATION, INCLUDING VOLTAGES, CURRENTS AND TEMPERATUES"</pre>
END_OBJECT	= HK_TABLE

4.3.9 COSISCOPE image product

4.3.9.1 General description

COSISCOPE image contains an image of target substrate in FITS format. P or M in the end of the product ID corresponds to the led illumination from Plus side (right) or Minus side (left).

4.3.9.2 Label example

PDS_VERSION_ID LABEL_REVISION_NOTE	= PDS3 = "V1.1"
FILE_RECORDS /* POINTER TO DATA OBJECTS */	<pre>= FIXED_LENGTH = 2880 = 730 = ("CS_2D8_20080722T171038_IM_M.LBL",1<bytes>) ("CS_2D8_20080722T171038_IM_M.LBL",2881<bytes>)</bytes></bytes></pre>
MISSION_NAME	AMETERS */ = "CS_2D8_20080722T171038_IM_M.LBL" = "R0-CAL-COSIMA-3-V2.0" = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20080722T171038_IM_M" = 2010-07-18T09:22:20 = "REFDR" = "3" = "ROSETTA" = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "STEINS FLY-BY" = "RO" = "ROSETTA-ORBITER" = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" = "IMAGE" = "COSISCOPE IMAGING" = "CALIBRATION" = 2008-07-22T17:10:38

STOP_TIME	<pre>= 2008-07-22T17:14:16</pre>
SPACECRAFT_CLOCK_START_COUNT	= ""
SPACECRAFT_CLOCK_STOP_COUNT	= "N/A"
SC_SUN_POSITION_VECTOR	= "N/A"
SC_TARGET_POSITION_VECTOR	= "N/A"
SC_TARGET_VELOCITY_VECTOR	= "N/A"
SPACECRAFT_ALTITUDE	= "N/A"
SUB_SPACECRAFT_LATITUDE	= "N/A"
SUB_SPACECRAFT_LONGITUDE	= "N/A"
PRODUCER_ID	= "FMI"
PRODUCER_FULL_NAME	= "JOHAN SILEN"
PRODUCER_INSTITUTION_NAME	= "FINNISH METEOROLOGICAL INSTITUTE"
DATA_QUALITY_ID	= -1
DATA_QUALITY_DESC	= "-1 = not checked"
ROSETTA:COSIMA_SUBSTRATE_ID	= "2D8"
ROSETTA:COSIMA_SUBSTRATE_DESC	= "Silver, blank"
OBJECT	<pre>= COSISCOPE_FITS_HEADER</pre>
BYTES	= 2880
HEADER_TYPE	= FITS
INTERCHANGE_FORMAT	= BINARY
RECORDS	= 1
DESCRIPTION	= "COSISCOPE FITS IMAGE HEADER"
END_OBJECT	= COSISCOPE_FITS_HEADER
OBJECT LINES LINE_SAMPLES SAMPLE_TYPE SAMPLE_BITS AXIS_ORDER_TYPE LINE_DISPLAY_DIRECTION SAMPLE_DISPLAY_DIRECTION MISSING_CONSTANT DESCRIPTION END_OBJECT	<pre>= COSISCOPE_FITS_IMAGE = 1024 = MSB_INTEGER = 16 = "FIRST_INDEX_FASTEST" = "UP" = "RIGHT" = -1 = "COSISCOPE FITS IMAGE OF THE SUBSTRATE" = COSISCOPE_FITS_IMAGE</pre>

END

4.3.10 COSISCOPE dust grain list product

4.3.10.1 General description

COSISCOPE dust grain list can be associated with a Cosiscope image product, or it can be selfstanding. Dust grain list product contains a list of dust grains (also called features) found on a target substrate.

4.3.10.2Label template

PDS_VERSION_ID LABEL_REVISION_NOTE	= PDS3 = "V1.0"
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTER TO DATA OBJECT */ ^FEATURE_TABLE	= FIXED_LENGTH = 37 = 6542 = 78 = 79
/* GENERAL DATA DESCRIPTION PAR FILE_NAME DATA_SET_ID DATA_SET_NAME PRODUCT_ID PRODUCT_CREATION_TIME PRODUCT_TYPE PROCESSING_LEVEL_ID MISSION_ID MISSION_NAME MISSION_PHASE_NAME INSTRUMENT_HOST_ID INSTRUMENT_HOST_NAME	AMETERS */ = "CS_2D8_20070927T175457_GRTAB" = "RO-CAL-COSIMA-3-V2.0" = "CS_2D8_20070927T175457_GR" = 2008-11-12T09:15:37 = "REFDR" = "3" = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "EARTH SWING-BY 2" = "RO" = "ROSETTA-ORBITER"

INSTRUMENT ID = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" INSTRUMENT_NAME INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "MASS SPECTROMETER" = "IMAGE" = "COSISCOPE IMAGING" TARGET_NAME = "CALIBRATION" TARGET_TYPE START_TIME STOP_TIME = "CALIBRATION" = 2007-09-27T17:54:57 = 2007-09-27T17:55:20 SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT = "1/0149536465.41269" = "1/0149536488.41269" SC_SUN_POSITION_VECTOR SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE = "N/A" SUB_SPACECRAFT_LONGITUDE = "FMI" PRODUCER_ID = "JOHAN SILEN" PRODUCER_FULL_NAME = "FINNISH METEOROLOGICAL INSTITUTE" PRODUCER_INSTITUTION_NAME DATA_QUALITY_ID DATA_QUALITY_DESC = -1 = "-1 = not checked" ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA:COSIMA_SUBSTRATE_DESC = "2D8" = "Silver, blank" **OBJECT** = FEATURE_TABLE NAME = FEATURES INTERCHANGE FORMAT = ASCII = 6464 ROWS COLUMNS = 6 ROW BYTES = 37 = "COSISCOPE_GRAINS.FMT" ^STRUCTURE = "COSISCOPE GENERATED LIST OF PROMINENT DESCRIPTION FEATURES IN THE SUBSTRATE IMAGE. THE SUBSTRATE HAS AREA OF 10000X10000 MICROMETERS.' END_OBJECT = FEATURE_TABLE END COSISCOPE_GRAINS.FMT: **OBJECT** = COLUMN COLUMN_NUMBER = 1 NAME = X LEFT DATA TYPE = ASCII_INTEGER START_BYTE = 1 BYTES = 6 UNIT = "MICROMETER" FORMAT = I6 = "FEATURE LOWER LEFT X-COORDINATE" DESCRIPTION END OBJECT = COLUMN = COLUMN 0BJFCT COLUMN NUMBER = 2 NAME = Y BOTTOM DATA_TYPE START_BYTE = ASCII_INTEGER = 8 BYTES = 6 UNIT = "MICROMETER" FORMAT = 16 DESCRIPTION = "FEATURE LOWER LEFT Y-COORDINATE" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 3 NAME = X RIGHT DATA_TYPE = ASCII_INTEGER START BYTE = 15 BYTES = 6 = "MICROMETER" UNIT FORMAT = 16 DESCRIPTION = "FEATURE UPPER RIGHT X-COORDINATE" = COLUMN END_OBJECT OBJECT = COLUMN COLUMN NUMBER = 4

NAME DATA_TYPE START_BYTE BYTES UNIT FORMAT DESCRIPTION END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT MISSING_CONSTANT DESCRIPTION	<pre>= Y_TOP = ASCII_INTEGER = 22 = 6 = "MICROMETER" = I6 = "FEATURE UPPER RIGHT Y-COORDINATE" = COLUMN = COLUMN = 5 = QUALITY_PX = ASCII_INTEGER = 29 = 3 = I3 = 0 = "FEATURE QUALITY FROM +X-SIDE LED ILLUMINATION. THE QUALITY FROM 0 TO 255 IS MAINLY RELATED TO THE CONTRAST FROM</pre>
END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT MISSING_CONSTANT DESCRIPTION	THE BACKGROUND" = COLUMN = COLUMN = 6 = QUALITY_MX = ASCII_INTEGER = 33 = 3 = I3 = 0 = "FEATURE QUALITY FROM -X-SIDE LED ILLUMINATION. THE QUALITY FROM 0 TO 255 IS MAINLY RELATED TO THE CONTRAST FROM THE BACKGROUND"
END_0BJECT	= COLUMN

4.3.11 COSISCOPE housekeeping product

4.3.11.1General information

With each Cosicope grain list, housekeeping data is associated. If the grain list has a corresponding Cosicope image, the housekeeping data applies also to that image. The Cosicope housekeeping product has the following elements:

- Cosiscope temperatures
- Substrate positioning information
- Imaging information ullet

Detailed description of the Cosiscope housekeeping product is given in the label example.

4.3.11.2Label example

PDS_VERSION_ID LABEL_REVISION_NOTE RELEASE_ID REVISION_ID	= PDS3 = "V1.0" = 0001 = 0000
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTER TO DATA OBJECT */ ^COSISCOPE_HK_TABLE	= FIXED_LENGTH = 334 = 10 = 9 = 10
/* GENERAL DATA DESCRIPTION PAF FILE_NAME DATA_SET_ID DATA_SET_NAME PRODUCT_ID	<pre>RAMETERS */ = "CS_2D8_20070927T175457_G_HK.TAB" = "R0-CAL-COSIMA-3-V2.0" = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_20070927T175457_G_HK" = 2008-11-12T09:15:37 = "ANCDR" = "6"</pre>

MISSION ID = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" MISSION_NAME MISSION PHASE NAME = "EARTH SWING-BY 2" = "R0" INSTRUMENT_HOST_ID = "ROSETTA-ORBITER" INSTRUMENT_HOST_NAME INSTRUMENT_ID INSTRUMENT_NAME = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" = "MASS SPECTROMETER" = "IMAGE" INSTRUMENT_TYPE INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC = "COSISCOPE IMAGING" = "CALIBRATION" TARGET_NAME TARGET_TYPE START_TIME STOP_TIME = "CALIBRATION" = 2007-09-27T17:54:57 = 2007 - 09 - 27T17 : 55 : 20SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT = "1/0149536465.41269" = "1/0149536488.41269" SC_SUN_POSITION_VECTOR = "N/A" SC_TARGET_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_ALTITUDE = "N/A" = "N/A" = "N/A" = "N/A" SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE = "N/A" PRODUCER_ID = "FMI" = "JOHAN SILEN" PRODUCER FULL NAME PRODUCER_INSTITUTION_NAME = "FINNISH METEOROLOGICAL INSTITUTE" DATA_QUALITY_ID DATA_QUALITY_DESC = -1 = "-1 = not checked" = "2D8" ROSETTA:COSIMA_SUBSTRATE_ID ROSETTA:COSIMA_SUBSTRATE_DESC = "Silver, blank" OBJECT = COSISCOPE HK TABLE NAME = COSISCOPE_HOUSEKEEPING INTERCHANGE_FORMAT = ASCII ROWS = 1 COLUMNS = 55 ROW BYTES = 334 = "COSISCOPE HK.FMT" ^STRUCTURE = "COSISCOPE HOUSEKEEPING INFORMATION" DESCRIPTION END_OBJECT = COSISCOPE_HK_TABLE END COSISCOPE HK.FMT: **OBJECT** = COLUMN COLUMN_NUMBER = 1 = "T1 SCOPE MIN" NAME DATA TYPE = ASCII REAL START_BYTE = 1 BYTES = 7 = "DEGREE KELVIN" UNIT = 999.9 MISSING_CONSTANT = "F7.1" FORMAT = "T1_SCOPE COSISCOPE TEMPERATURE MINIMUM AT CAMERA" DESCRIPTION END OBJECT $= COL\overline{U}MN$ **OBJECT** = COLUMN COLUMN_NUMBER = 2 = "T1 SCOPE MEAN" NAME DATA TYPE = ASCII REAL START_BYTE = 9 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T1_SCOPE COSISCOPE TEMPERATURE MEAN AT CAMERA" DESCRIPTION $= COL\overline{U}MN$ END OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 3 = "T1_SCOPE_MAX" NAME DATA_TYPE = ASCII_REAL START_BYTE = 17 = 7 BYTES

= "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT DESCRIPTION = "T1 SCOPE COSISCOPE TEMPERATURE MAXIMUM AT CAMERA" $= COL\overline{U}MN$ END_OBJECT OBJECT = COLUMN COLUMN_NUMBER = 4 = "T1 SCOPE STD" NAME = ASCII_REAL DATA TYPE START_BYTE = 25 BYTES = 7 = "DEGREE KELVIN" UNIT = 999.9 MISSING_CONSTANT = "F7.1" FORMAT DESCRIPTION = "T1_SCOPE COSISCOPE TEMPERATURE STANDARD DEVIATION AT CAMERE" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 5 = "T3 SCOPE MIN" NAME DATA_TYPE = ASCII_REAL START BYTE = 33 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT DESCRIPTION = "T3_SCOPE COSISCOPE TEMPERATURE MINIMUM AT CDPU" END OBJECT = COLUMN**OBJECT** = COLUMN COLUMN_NUMBER = 6 = "T3 SCOPE MEAN" NAME = ASCII_REAL DATA_TYPE START BYTE = 41 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 FORMAT = "F7.1" DESCRIPTION = "T3_SCOPE COSISCOPE TEMPERATURE MEAN AT CDPU" END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 7 = "T3 SCOPE MAX" NAME DATA_TYPE = ASCII_REAL START_BYTE = 49 BYTES = 7 = "DEGREE KELVIN" UNTT MISSING CONSTANT = 999.9 = "F7.1" FORMAT DESCRIPTION = "T3_SCOPE COSISCOPE TEMPERATURE MAXIMUM AT CDPU" END_OBJECT = COLUMN**OBJECT** = COLUMN COLUMN_NUMBER = 8 = "T3 SCOPE STD" NAME DATA_TYPE = ASCII_REAL START_BYTE = 57 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT DESCRIPTION = "T3_SCOPE COSISCOPE TEMPERATURE STANDARD DEVIATION AT CDPU" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 9 = "T4 SCOPE MIN" NAMF DATA TYPE = ASCII REAL START_BYTE = 65 BYTES = 7

UNIT = "DEGREE KELVIN" MISSING_CONSTANT = 999.9 = "F7.1" FORMAT DESCRIPTION = "T4 SCOPE COSISCOPE TEMPERATURE MINIMUM AT OPTICS" $= COL\overline{U}MN$ END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 10 = "T4_SCOPE_MEAN" NAME DATA TYPE = ASCII_REAL START_BYTE = 73 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T4_SCOPE COSISCOPE TEMPERATURE MEAN AT OPTICS" DESCRIPTION $= COL\overline{U}MN$ END OBJECT OBJECT = COLUMN COLUMN_NUMBER = 11 = "T4_SCOPE_MAX" NAME = ASCII_REAL DATA TYPE STARTBYTE= 81 BYTES = 7 = "DEGREE KELVIN" UNIT = 999.9 MISSING_CONSTANT = "F7.1" FORMAT = "T4_SCOPE COSISCOPE TEMPERATURE MAXIMUM AT OPTICS" DESCRIPTION $= COL\overline{U}MN$ END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 12 = "T4_SCOPE_STD" NAME = ASCII_REAL DATA TYPE START_BYTE = 89 BYTES = 7 = "DEGREE KELVIN" UNIT MISSING_CONSTANT = 999.9 = "F7.1" FORMAT = "T4_SCOPE COSISCOPE TEMPERATURE STANDARD DEVIATION AT OPTICS" DESCRIPTION END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 13 = MODE NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 97 BYTES = 1 = "I1" FORMAT = "0 = ONLY GRAINS INFORMATION, DESCRIPTION 1 = ONE OR TWO COMPRESSED IMAGES ARE ALSO GENERATED DEPENDING ON THE COMMAND WORD" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 14 = CCD CLEAN NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 99 BYTES = 1 = "I1" FORMAT = "NUMBER OF ADDITIONAL CLEAN IMAGES WHICH HAVE BEEN DESCRIPTION PROGRAMMED TO GET RID OF ACCUMULATED CHARGES ON THE CCD. NOMINAL IS 0 FROM -20 CELSIUS DEGREE TO +25 CELSIUS DEGREE OPERATING TEMPERATURE" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 15 = DARK NAMF DATA TYPE = ASCII INTEGER START BYTE = 101 BYTES = 1

FORMAT DESCRIPTION END OBJECT	<pre>= "I1" = "0=N0 DARK CURRENT SUBTRACTION, 1=DARK CURRENT SUBTRACTION THIS PARAMETER DEFINES WHETHER A DARK CURRENT IMAGE WAS TO BE SUBTRACTED FROM THE COSISCOPE IMAGE BEFORE THE IMPLEMENTATION OF THE GRAIN SEACH ALGORITHM AND (IF REQUIRED BY THE COMMAND) THE TRANSMISSION OF THE IMAGE(S)" = COLUMN</pre>
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= COLUMN = 16 = DETECTION = ASCII_INTEGER = 103 = 1 = "I1" = "0 = GRAINS ARE SEARCHED FOR AS POSITIVE ALBEDO</pre>
END_OBJECT	= COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= COLUMN = 17 = THRESHOLD = ASCII_INTEGER = 105 = 1 = "I1" = "THE DETECTION LEVEL (0 TO 7) DEFINE THE FACTOR ABOVE THE BACKGROUND, WHICH CONSTITUTES A DETECTION FOR VALUES 1 TO 7 FACTORS 5,6,7,8,10,12,16. A VALUE OF 0 GENERATES A TEST IMAGE WHICH IS DOCECCEP NOMENALLY."</pre>
END_OBJECT	PROCESSED NOMINALLY." = COLUMN
OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION	<pre>= COLUMN = 18 = PACKING = ASCII_INTEGER = 107 = 1 = "I1" = "IMAGE COMPRESSION MODE (0 TO 3) 0: BIT-PACKING (10 BITS / PIXELS 1: REVERSIBLE COMPRESSION 2: WAVELET COMPRESSION, 1 BIT/PIXEL 3: WAVELET COMPRESSION, 2 BITS/PIXEL"</pre>
END_OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = 19 = MINUS_X_LED = ASCII_INTEGER = 109 = 1 = "I1" = "0,1,2,4 =N0 -X LED USED, 3,5,6,7=-X LED USED" = COLUMN</pre>
START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT	= PLUS X_LED = ASCII_INTEGER = 111 = 1 = "I1" = "0,1,2,4=N0 +X LED USED, 3,5,6,7=+X LED USED" = COLUMN
OBJECT COLUMN_NUMBER	= COLUMN = 21

NAME = PLUS_X_LED_ACQ_TIME DATA_TYPE = ASCII_INTEGER START_BYTE = 113 BYTES = 5 = "MILLISECOND" UNIT FORMAT = "I5" = "PLUS X LED ACQUISITION TIME IN MS, DEFAULT 300 MS" DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 22 NAME = MINUS_X_LED_ACQ_TIME DATA TYPE = ASCII_INTEGER START_BYTE = 119 BYTES = 5 = "MILLISECOND" UNIT = "I5" FORMAT = "MINUS X LED ACQUISITION TIME IN MS, DEFAULT 300 MS" DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN COLUMN_NUMBER = 23 = PLUS_X_LED_BIAS NAMF DATA TYPE = ASCII INTEGER START_BYTE = 125 = 3 = "I3" BYTES FORMAT = "PLUS X LED BIAS" DESCRIPTION = COLUMN END_OBJECT OBJECT = COLUMN COLUMN_NUMBER = 24 NAME = MINUS_X_LED_BIAS = ASCII_INTEGER DATA TYPE = 129 START_BYTE BYTES = 3 = "I3" FORMAT DESCRIPTION = "MINUS X LED BIAS" END_OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 25 = PLUS_X_LED_GAIN NAME DATA_TYPE = ASCIĪ_ĪNTEGĒR START BYTE = 133 = 3 BYTES = "I3" = "PLUS X LED GAIN" FORMAT DESCRIPTION = COLUMN END_OBJECT OBJECT = COLUMN COLUMN_NUMBER = 26 = MINUS_X_LED_GAIN NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 137 = 3 = "I3" BYTES FORMAT = "MINUS X LED GAIN" DESCRIPTION = COLUMN END_OBJECT OBJECT = COLUMN COLUMN_NUMBER = 27 = PLUS_X_CAL_QUALITY NAME DATA TYPE = ASCIT_INTEGER START_BYTE = 141 BYTES = 5 FORMAT = "I5" MISSING_CONSTANT = 43960 DESCRIPTION = "PLUS X LED CALIBRATION STRIP POSITION QUALITY" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 28 NAME = PLUS_X_AX

DATA TYPE = ASCII_INTEGER START_BYTE = 147 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 DESCRIPTION = "PLUS X LED A DOT X POSITION" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN NUMBER = 29 = PLUS_X_AY NAME = ASCIT_INTEGER DATA_TYPE START_BYTE = 153 BYTES = 5 = "I5" FORMAT MISSING CONSTANT = 43960 = "PLUS X LED A DOT Y POSITION" DESCRIPTION END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 30 = PLUS_X_BX = ASCII_INTEGER NAME DATA_TYPE START_BYTE = 159 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 DESCRIPTION = "PLUS X LED B DOT X POSITION" = COLUMN END_OBJECT = COLUMN **OBJECT** COLUMN_NUMBER = 31 NAME = PLUS_X_BY DATA TYPE = ASCII_INTEGER START_BYTE = 165 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 = "PLUS X LED B DOT Y POSITION" DESCRIPTION END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 32 = PLUS_X_LABEL NAME DATA TYPE = ASCII_INTEGER START_BYTE = 171 BYTES = 5 = "I5" FORMAT MISSING CONSTANT = 43960 DESCRIPTION = "PLUS X LED SUBSTRATE LABEL THE SUBSTRATE ID:S MATCH THE SUBSTRATE LABELS IN THE REFERENCE STRIP WITH THE FOLLOWING TABLE: 1C1 = 632C1 = 953C1 = 1111C2 = 1192C2 = 1233C2 = 1251C3 = 1262C3 = 1593C3 = 1751C4 = 1832C4 = 1873C4 = 1891C5 = 1902C5 = 2073C5 = 215 1C6 = 2192C6 = 2213C6 = 2221C7 = 231 2C7 = 2353C7 = 237 1C8 = 238

	2C8 = 243 3C8 = 245 1C9 = 246 2C9 = 249 3C9 = 250 1CA = 252 2CA = 287 3CA = 303 1CB = 311 2CB = 315 3CB = 317 1CC = 318 2CC = 343 1CD = 347 2CD = 349 3CD = 350 1CE = 363 3CE = 365 1CF = 373 1D0 = 374 2D0 = 377 3D0 = 377 3D0 = 378 1D1 = 380 2D1 = 399 3D1 = 407 1D2 = 411 2D2 = 413 3D2 = 414 1D3 = 423 2D3 = 427 3D3 = 427 3D3 = 427 3D3 = 427 3D4 = 435 3D4 = 437 1D5 = 438 2D5 = 441 3D5 = 442 1D6 = 444 2D6 = 455 3D6 = 459 1D7 = 461 2D7 = 461 2D7 = 461 2D7 = 462 3D8 = 4770 3D8 = 477
BYTES FORMAT	<pre>= COLUMN = 33 = PLUS_X_SUBST_QUALITY = ASCII_INTEGER = 177 = 5 = "15" = 43960 = "PLUS_X_LED_SUBSTRACE_POSITION_QUALITY" = COLUMN</pre>
BYTES FORMAT	<pre>= COLUMN = 34 = PLUS_X_CX = ASCII_INTEGER = 183 = 5 = "I5" = 43960 = "PLUS_X_LED_C_DOT_X_POSITION" = COLUMN</pre>

= COLUMN 0BJECT COLUMN_NUMBER = 35 NAME = PLUS X CY DATA TYPE = ASCII_INTEGER START_BYTE = 189 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 DESCRIPTION = "PLUS X LED C DOT Y POSITION" END OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 36 = PLUS_X_DX NAME DATA TYPE = ASCII_INTEGER START_BYTE = 195 BYTES = 5 FORMAT = "I5" MISSING CONSTANT = 43960 = "PLUS X LED D DOT X POSITION" DESCRIPTION END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN NUMBER = 37 = PLUS X DY NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 201 BYTES = 5 = "I5" FORMAT MISSING CONSTANT = 43960 DESCRIPTION = "PLUS X LED D DOT Y POSITION" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 38 = PLUS_X_TARGET_LABEL = ASCII_INTEGER NAME DATA TYPE START_BYTE = 207 BYTES = 5 FORMAT = "I5" MISSING_CONSTANT = 43960 = "PLUS X LED TARGET LABEL (N/A WITH FLIGHT TARGETS)" DESCRIPTION END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 39 NAME = MINUS_X_CAL_QUALITY DATA_TYPE = ASCII_INTEGER START_BYTE = 213 = 5 = "I5" BYTES FORMAT MISSING CONSTANT = 43960 = "MINUS X LED CALIBRATION STRIP POSITION QUALITY" DESCRIPTION END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 40 = MINUS X AX NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 219 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 DESCRIPTION = "MINUS X LED A DOT X POSITION" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 41 NAME = MINUS_X_AY DATA TYPE = ASCII_INTEGER START_BYTE = 225 = 5 BYTES = "I5" FORMAT = 43960 MISSING_CONSTANT

= "MINUS X LED A DOT Y POSITION" DESCRIPTION END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 42 NAME = MINUS X BX DATA TYPE = ASCII_INTEGER START_BYTE = 231 = 5 = "I5" BYTES FORMAT MISSING CONSTANT = 43960 DESCRIPTION = "MINUS X LED B DOT X POSITION" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN NUMBER = 43 = MINUS_X_BY NAME = ASCII_INTEGER DATA_TYPE START_BYTE = 237 = 5 = "I5" BYTES FORMAT MISSING CONSTANT = 43960 DESCRIPTION = "MINUS X LED B DOT Y POSITION" END OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 44 NAME = MINUS_X_LABEL DATA_TYPE START_BYTE = ASCII_INTEGER = 243 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 DESCRIPTION = "MINUS X LED SUBSTRATE LABEL THE SUBSTRATE ID:S MATCH THE SUBSTRATE LABELS IN THE REFERENCE STRIP WITH THE FOLLOWING TABLE: 1C1 = 632C1 = 953C1 = 1111C2 = 1192C2 = 123 3C2 = 125 1C3 = 1262C3 = 1593C3 = 1751C4 = 1832C4 = 1873C4 = 1891C5 = 1902C5 = 2073C5 = 2151C6 = 2192C6 = 2213C6 = 2221C7 = 2312C7 = 2353C7 = 2371C8 = 2382C8 = 2433C8 = 245 1C9 = 2462C9 = 2493C9 = 250 1CA = 2522CA = 287 3CA = 3031CB = 3112CB = 3153CB = 3171CC = 3182CC = 3353CC = 3431CD = 3472CD = 349

1D2 = 4112D2 = 4133D2 = 4141D3 = 4232D3 = 4273D3 = 4291D4 = 4302D4 = 4353D4 = 4371D5 = 4382D5 = 4413D5 = 4421D6 = 4442D6 = 4553D6 = 4591D7 = 4612D7 = 4623D7 = 4671D8 = 4692D8 = 4703D8 = 473" END_OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 45 = MINUS_X_SUBST_QUALITY NAME DATA TYPE = ASCII_INTEGER START_BYTE = 249 BYTES = 5 FORMAT = "I5" MISSING_CONSTANT = 43960 = "MINUS X LED SUBSTRACE POSITION QUALITY" DESCRIPTION END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 46 = MINUS_X_CX NAME DATA TYPE = ASCII_INTEGER START_BYTE = 255 BYTES = 5 FORMAT = "I5" MISSING CONSTANT = 43960 = "MINUS X LED C DOT X POSITION" DESCRIPTION END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 47 = MINUS_X_CY NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 261 BYTES = 5 = "I5" FORMAT MISSING CONSTANT = 43960 DESCRIPTION = "MINUS X LED C DOT Y POSITION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 48 = MINUS X DX NAME DATA TYPE = ASCII_INTEGER START_BYTE = 267

3CD = 350 1CE = 359 2CE = 363 3CE = 365 1CF = 366 2CF = 371 3CF = 373 1D0 = 374 2D0 = 377 3D0 = 378 1D1 = 380 2D1 = 399 3D1 = 407

= 5 = "I5" BYTES FORMAT MISSING CONSTANT = 43960 DESCRIPTION = "MINUS X LED D DOT X POSITION" = COLUMN END_OBJECT **OBJECT** = COLUMN COLUMN_NUMBER = 49 NAME = MINUS X DY = ASCII_INTEGER DATA TYPE START_BYTE = 273 BYTES = 5 = "I5" FORMAT MISSING_CONSTANT = 43960 DESCRIPTION = "MINUS X LED D DOT Y POSITION" END_OBJECT = COLUMN **OBJECT** = COLUMN COLUMN_NUMBER = 50 = MINUS_X_TARGET_LABEL NAME DATA_TYPE = ASCII_INTEGER START_BYTE = 279 = 5 = "I5" BYTES FORMAT MISSING_CONSTANT = 43960 = "MINUS X LED TARGET LABEL (N/A WITH FLIGHT TARGETS)" DESCRIPTION END_OBJECT = COLUMN = COLUMN **OBJECT** COLUMN_NUMBER = 51 = X OFFSET NAME DATA_TYPE = ASCII_REAL START_BYTE = 285 BYTES = 9 = "MICROMETER" UNIT = "F9.2" FORMAT DESCRIPTION = "SUBSTRATE OFFSET IN X" = COLUMN END_OBJECT OBJECT = COLUMN COLUMN_NUMBER = 52 NAME = Y OFFSET DATA TYPE = ASCII_REAL START_BYTE = 295 BYTES = 9 = "MICROMETER" UNIT = "F9.2" FORMAT = "SUBSTRATE OFFSET IN Y" DESCRIPTION = COLUMN END_OBJECT OBJECT = COLUMN COLUMN_NUMBER = 53 = X_ORIGIN NAME DATA_TYPE = ASCII_REAL START_BYTE = 305 BYTES = 9 = "MICROMETER" UNIT = "F9.2" FORMAT DESCRIPTION = "SUBSTRATE ORIGIN X IN COSISCOPE FIELD OF VIEW" END_OBJECT = COLUMN = COLUMN OBJECT COLUMN_NUMBER = 53 = Y ORIGIN NAME DATA_TYPE = ASCII_REAL START BYTE = 315 BYTES = 9 = "MICROMETER" UNIT = "F9.2" FORMAT = "SUBSTRATE ORIGIN Y IN COSISCOPE FIELD OF VIEW" DESCRIPTION = COLUMN END_OBJECT OBJECT = COLUMN

COLUMN_NUMBER

= 54

NAME	=	ROTATION
DATA_TYPE	=	ASCII_REAL
START_BYTE	=	325
BYTES	=	8
UNIT	=	"DEGREE"
FORMAT	=	"F8.4"
DESCRIPTION	=	"SUBSTRATE ROTATION ANGLE"
END_OBJECT	=	COLUMN

4.3.12 Substrate history ancillary product

4.3.12.1 General description

Substrate history product contains information about substrate storage and expose periods, cleaning and heating actions, COSISCOPE camera images and grains lists and any spectra taken. The history product contains history from the moment substrates were installed in the COSIMA flight instrument.

4.3.12.2Label example

PDS_VERSION_ID	= PDS3
LABEL_REVISION_NOTE	= "V1.1"
/* FILE FORMAT */ RECORD_TYPE RECORD_BYTES FILE_RECORDS LABEL_RECORDS /* POINTER TO DATA OBJECT */ ^HISTORY_TABLE	= FIXED_LENGTH = 148 = 67 = 18 = 19
PRODUCT_TYPE PROCESSING_LEVEL_ID MISSION_ID MISSION_PHASE_NAME INSTRUMENT_HOST_ID INSTRUMENT_HOST_ID INSTRUMENT_ID INSTRUMENT_NAME INSTRUMENT_NAME INSTRUMENT_MODE_ID INSTRUMENT_MODE_ID INSTRUMENT_MODE_DESC TARGET_NAME TARGET_TYPE START_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_START_COUNT SC_SUN_POSITION_VECTOR SC_TARGET_VELOCITY_VECTOR SC_TARGET_VELOCITY_VECTOR SC_TARGET_VELOCITY_VECTOR SPACECRAFT_LATITUDE SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE PRODUCER_ID PRODUCER_ID PRODUCER_INSTITUTION_NAME DATA_QUALITY_ID DATA_QUALITY_DESC ROSETTA:COSIMA_SUBSTRATE_DESC OBJECT	<pre>= "CS_2D8_SUBSTRATE_HIST.TAB" = "RO-CAL-COSIMA-3-V2.0" = "ROSETTA-ORBITER CAL COSIMA 3 V2.0" = "CS_2D8_SUBSTRATE_HIST" = 2008-111-12T09:15:54 = "ANCDR" = 6 = "ROSETTA" = "INTERNATIONAL ROSETTA MISSION" = "N/A" = "RO" = "ROSETTA-ORBITER" = "COSIMA" = "COMETARY SECONDARY ION MASS ANALYZER" = "MASS SPECTROMETER" = "N/A" = "N/A" = "N/A" = "CALIBRATION" = 2002-05-29T00:00:00 = 2008-07-24T00:00:00 = 2008-07-24T00:00:00 = "N/A" = "1/0175478364.35517" = "N/A" = "SILVER, BLANK" = HISTORY_TABLE</pre>
NAME	= SUBSTRATE_HISTORY
INTERCHANGE_FORMAT	= ASCII

ROWS	
COLUMNS	
ROW BYTES	
^STRUCTURE	
DESCRIPTION	
END_OBJECT	

= 49 = 9 = 148

= "COSIMA_HISTORY.FMT"
= "SUBSTRATE HISTORY"
= HISTORY_TABLE

END

COSIMA_HISTORY.FMT:

OBJECT COLUMN NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT **OBJECT** COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT **OBJECT** COLUMN_NUMBER NAME DATA_TYPE START BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION END OBJECT **OBJECT** COLUMN NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END OBJECT **OBJECT**

OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE = COLUMN = 1 = UTC START DATE = DATE= 1 = 19 = "A19" = "START TIME IN UTC" = COLUMN = COLUMN = 2 = UTC_STOP_DATE = DATE = 21 = 19 = "A19" = "STOP TIME IN UTC" = COLUMN = COLUMN = 3 = TIME = ASCII_INTEGER = 41 = 10= "SECOND" = -1 = "I10" = "TIME SPENT IN THE POSITION IN SECONDS" = COLUMN = COLUMN = 4 = POSITION = CHARACTER = 53 = 9 = "A9" = "POSITION, POSSIBLE VALUES ARE STORAGE, in target storage IMAGE, substrate image GRAINS, dust position list PEAKS, peak list acquisition SCAN, total count acquition SPECTRUM, spectrum acquistion EXPOSE, exposed to the outside CLEAN, at beam cleaning position CHEMISTRY, at heating station" = COLUMN = COLUMN = 5 = X COORDINATE = ASCII_INTEGER = 64 = 5 = "MICROMETER" = -1 = "I5" = "SUBSTRATE X-COORDINATE IN MICROMETERS, ZERO IS AT LEFT" = COLUMN = COLUMN = 6 = Y COORDINATE = ASCII_INTEGER

START_BYTE BYTES UNIT MISSING_CONSTANT FORMAT DESCRIPTION	<pre>= 70 = 5 = "MICROMETER" = -1 = "I5" = "SUBSTRATE Y-COORDINATE IN MICROMETERS, ZERO IS AT BOTTOM"</pre>
END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES MISSING_CONSTANT FORMAT UNIT	<pre>= COLUMN = COLUMN = 7 = TIP_CURRENT = ASCII_INTEGER = 76 = 3 = -99 = "I3" = "MICROAMPERE"</pre>
END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE BYTES FORMAT DESCRIPTION END_OBJECT OBJECT COLUMN_NUMBER NAME DATA_TYPE START_BYTE	<pre>= CHARACTER = 81 = 31 = "A31" = "SCIENCE DATA LABEL FILENAME" = COLUMN = COLUMN = 9 = HOUSEKEEPING_FILENAME = CHARACTER = 115</pre>
BYTES FORMAT DESCRIPTION END_OBJECT	<pre>= 31 = "A31" = "SCIENCE DATA RELATED HOUSEKEEPING LABEL FILENAME" = COLUMN</pre>

5 Appendix: Directory Listing of Data Set RO-CAL-COSIMA-3-V3.0

TOP-LEVEL-DIRECTORY

- AAREADME.TXT	This file
- VOLDESC.CAT	Description of the data volume
- [CATALOG]	The directory containing information about COSIMA calibration data set
- CATINFO.TXT	Info about CATALOG directory contents
- MISSION.CAT	Rosetta mission description, provided by Rosetta project
- INSTHOST.CAT	Rosetta spacecraft description, provided by Rosetta project
- INST.CAT	COSIMA instrument description
- DATASET.CAT	Dataset description
- SOFT.CAT	Software description. Empty for COSIMA datasets
PERSON.CAT	Dataset provider contact information

- REF.CAT	References
- TARGET.CAT	Target descriptions
- [DATA] -	The directory for instrument data products
- [SUB_YXX]	Substrate YXX data products, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal
CS_YXX_SUBST	<pre>RATE_HIST.TAB Substrate history product, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal</pre>
CS_YXX_YYYM	<pre>IMDDTHHMMSS_SP_Z.TAB Substrate spectrum, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. Z is either P for positive or N for negative spectrum.</pre>
CS_YXX_YYYM	<pre>IMDDTHHMMSS_PK_Z.TAB Substrate peak list, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. Z is either P for positive or N for negative peak list.</pre>
CS_YXX_YYYM	<pre>IMDDTHHMMSS_S_HK.TAB Substrate spectrum or peak list housekeeping data, where Y is substrate target holder position l=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date.</pre>
CS_YXX_YYYM	<pre>MDDTHHMMSS_SCAN.TAB Substrate scan data, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is</pre>

the date. - CS YXX_YYYYMMDDTHHMMSS_SCHK.TAB Substrate scan housekeeping data, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. - CS_YXX_YYYYMMDDTHHMMSS_HEAT.TAB Substrate heating data, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. - CS_YXX_YYYYMMDDTHHMMSS_CLEA.TAB Substrate cleaning data, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. - CS_YXX_YYYYMMDDTHHMMSS_CLHK.TAB Substrate cleaning housekeeping data, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. - CS_YXX_YYYYMMDDTHHMMSS_GR__.TAB Substrate grain list, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. - CS_YXX_YYYYMMDDTHHMMSS_IM_Z.FIT Substrate FITS-format image, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date. ZZ is either P for right (plus) side led or M (minus) for left side led illumination.

	- CS_YXX_YYYYMMDDT 	HHMMSS_G_HK.TAB Substrate grain list or image housekeeping data, where Y is substrate target holder position 1=top, 2=middle, 3=bottom. XX is target holder ID number, range from C1 to D8, where counting is done in hexadecimal. YYYYMMDDTHHMMSS is the date.
- [DO	CUMENT]	The directory for documentation
	- DOCINFO.TXT	Info about DOCUMENT directory contents
	- COSIMASIS.ASC	COSIMA PDS interface description in ASCII format
	- COSIMASIS.PDF	COSIMA PDS interface description in PDF format
	- COSIMASISXXX.JPG	COSIMA PDS interface description figures for ASCII version, XXX is gives the figure number in the form 001, 002
	 - COSIMAPAPER.ASC	COSIMA instrument paper in ASCII format
	 - COSIMAPAPER.PDF	COSIMA instrument paper in PDF format
	 - COSIMAPAPERXXX.JPG C 	OSIMA instrument paper images in JPG format.
- [IN	DEX]	The directory for index files
	- INDEX.LBL	A PDS detached label describing INDEX.TAB
	- INDEX.TAB	Tabular summary of the data files
	 - INDXINFO.TXT	Info about INDEX directory contents
- [LAI	BEL] 	The directory for formatting files used by the attached labels
	- LABINFO.TXT	Info about LABEL directory contents
	 - COSIMA_HISTORY.FMT 	Substrate history column object definitions
	 - COSIMA_SPECTRUM_DATA.F 	MT Spectrum column object definitions
	- COSIMA_SPECTRUM_HK.FMT	Spectrum housekeeping statistics column object definitions
	 - COSIMA_SPECTRUM_PEAKS.	FMT

Spectrum peak data column object definitions
- COSIMA_SPECTRUM_PEAK_SCALE.FMT Spectrum peak data scaling column object definitions
- COSIMA_SPECTRUM_TDC_CALIB.FMT Spectrum time to digital unit temperature calibration result column object definitions
- COSIMA_SPECTRUM_TDC_TIMING.FMT Spectrum time to digital unit timing setup column object definitions
- COSIMA_CLEANING.FMT Substrate cleaning column object definitions
- COSIMA_HEATING_DATA.FMT Substrate heating data column object definitions
- COSIMA_HEATING_SETUP.FMT Substrate heating setup column object definitions
- COSIMA_SCAN_DATA.FMT Substrate scan column object definitions
- COSISCOPE_GRAINS.FMT Cosiscope grain search result column object definitions
 - COSISCOPE_HK.FMT Cosiscope housekeeping statistics column object definitions

I