European Space Agency Research and Science Support Department Planetary Missions Division

ROSETTA-RPC-MIP

to Planetary Science Archive Interface Control Document

RPC-MIP-EAICD RPC/MIP/OP/14/030247/LPC2E

Issue 1.3

04 June 2015

Prepared by: D. Lagoutte, X. Vallières and SONC

Approved by: J.P. Lebreton

LABORATOIRE DE PHYSIQUE ET CHIMIE DE L'ENVIRONNEMENT ET DE L'ESPACE

3A, avenue de la Recherche Scientifique 45071 Orléans cedex 02

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3 Date : 04 June 2015 Page : 2

Distribution List

Recipient	Organisation	Recipient

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3 Date : 04 June 2015 Page : 3

Change Log

Date	Sections Changed	Reasons for Change
7/11/03	Issue 0.0	Draft
9/02/06	Issue 0.3	Improved draft
03/10/2006	Issue 1 revision 0	Creation by SONC, checked by LPC2E and C. Dunford
04/03/2009	Issue 1 revision 1	STREAM record_type changed into FIXED_LENGTH
17/03/2010	Issue 1 revision 2	The following chapters were suppressed "Subsystem Tests", "Other files written during calibration", "Other applicable standards"
		§2 information about MIP sensors orientation added
		§2.3.2.1 added (electron density and temperature determination)
		§2.3.4 updated
		§3.4.1 volume keywords updated
		§3.4.3.7 updated
		§4.3.1 updated
		§4.3.2.3 and 4.3.3.3 0 dB definition added in MIP_CONFIG_TABLE. FMT and MIP_CALIBRATED_HK .FMT
04/06/2015	Issue 1 revision 3	Document updated. Information relevant to data usage transferred to the RPC-MIP user guide

TBD/TBC ITEMS

Section	Description
2.2	Time sampling for electron density end electron temperature
2.3.7	Definition of the derived data
3.4.3.4.2	Definition of the geometric index file
3.4.3.5	Definition of the browse files (comet phase)
3.4.3.6	Description of the contents of the Geometry directory
4.3.4	Definition of the level 5 (derived) data products

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3

: 04 June 2015 : 1 Date

Page

Table Of Contents

1	Intr	roduction	3
	1.1	Purpose and Scope	
	1.2	Archiving Authorities	3
	1.1.	Archiving Authorities 1 ESA's Planetary Science Archive (PSA)	Erreur! Signet non défini.
	1.3	Contents	4
	1.4	Intended Readership	
	1.5	Applicable Documents	
	1.6	Relationships to Other Interfaces	4
	1.7	Acronyms and Abbreviations	
	1.8	Contact Names and Addresses	5
2	Ove	erview of Instrument Design, Data Handling Process and Product Generation	
	2.1	Scientific Objectives	7
	2.2	Data Handling Process	
	2.3	Overview of Data Products	8
	2.3.	1 Pre-Flight Data Products	8
	2.3.	2 Instrument Calibrations	
	2.3.		8
	2.3.		
	2.3.		
	2.3.		
	2.3.	7 Derived and other Data Products	
	2.3.	8 Ancillary Data Usage	
3	Arc	hive Format and Content	
	3.1	Format and Conventions	9
	3.1.		9
	3.1.	2 Data Set ID Formation	10
	3.1.	3 Data Directory Naming Convention	10
	3.1.	4 Filenaming Convention	10
	3.2	Standards Used in Data Product Generation	
	3.2.		
	3.2.		11
	3.2.	Reference Systems	12
	3.3	Data Validation	12
	3.3.	1 Data Quality ID	12
	3.4	Content	12
	3.4.	2 Data Set	13
	3.4.	3 Directories	13
4	Det	ailed Interface Specifications	18
	4 1	Structure and Organization Overview	18

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3 Date : 04 June 2015 Page : 2

4	.2 Da	ta Sets, Definition and Content	18
4	.3 Da	ta Product Design	19
	4.3.1	Data Product Design of calibrated SC data (level 3)	19
	4.3.2	Data Product Design of MIP Configuration Table data (level 3)	28
	4.3.3	Data Product Design of calibrated HK data (level 3)	35
	4.3.4	Data Product Design of derived SC data (level 5)	37
5	Append	ix: Available Software to read PDS files	37
6	Append	ix: Example of Directory Listing of Data Set RO-CAL-RPCMIP-3-GRND-V1.1	38
7	Append	ix: Example of PDS label for RPCMIP level 3 data product	40

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 3

1 Introduction

1.1 Purpose and Scope

The purpose of this EAICD (Experimenter to (Science) Archive Interface Control Document) is twofold. First it provides users of the RPC-MIP instrument with detailed description of the product and a description of how it was generated, including data sources and destinations. Secondly, it is the official interface between the RPC-MIP instrument team and archiving authority.

1.2 Archiving Authorities

The Planetary Data System Standard is used as archiving standard by

- NASA for U.S. planetary missions, implemented by PDS
- ESA for European planetary missions, implemented by the Research and Scientific Support Department (RSSD) of ESA

ESA's Planetary Science Archive (PSA)

ESA implements an online science archive, the PSA,

- to support and ease data ingestion
- to offer additional services to the scientific user community and science operations teams as e.g.
 - search queries that allow searches across instruments, missions and scientific disciplines
 - o several data delivery options as
 - direct download of data products, linked files and data sets
 - ftp download of data products, linked files and data sets

The PSA aims for online ingestion of logical archive volumes and will offer the creation of physical archive volumes on request.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 4

1.3 Contents

This document describes the data flow of the RPC-MIP instrument on the Rosetta mission from the s/c until the insertion into the PSA for ESA. It includes information on how data were processed, formatted, labeled and uniquely identified. The document discusses general naming schemes for data volumes, data sets, data and label files. Standards used to generate the product are explained. Software that may be used to access the product is explained further on.

The design of the data set structure and the data product is given. Examples of these will be given in the appendix.

1.4 Intended Readership

The staff of the archiving authority (Planetary Science Archive, ESA, RSSD, design team) and any potential user of the RPC-MIP data.

1.5 Applicable Documents

- AD 1. Planetary Data System Data Preparation Workbook, February 17, 1995, Version 3.1, JPL, D-7669, Part1
- AD 2. Planetary Data System Standards Reference, August 1, 2003, Version 3.6, JPL, D-7669, Part2
- AD 3. Rosetta Time handling RO-EST-TN-3165, issue 1 rev 0, February 9, 2004
- AD 4. ROSETTA Archive Generation, Validation and Transfer Plan, January 10, 2006, Issue 2, Rev. 3, RO-EST-PL-5011
- AD 5. ROSETTA Archive Conventions, RO-EST-TN-3372, Issue 5, Rev. 0, 28 April 2009.
- AD 6. Rosetta Project MIP experiment Onboard Data Handling, RPC/MIP/RP/13/980317/LPC2E, Ed. 3, Rev. 4, September 20 2000.
- AD 7. Rosetta Project MIP experiment MIP/PIU Data Handling Interface, PC/MIP/RP/126/990253/LPC2E, Ed. 3, Rev. 3, May 23 2001.
- AD 8. Rosetta Project MIP experiment Manuel d'utilisation du FS, RPC/MIP/OP/1/020125/LPC2E, Ed. 1, Rev. 0, 15 mars 2002.
- AD 9. Rosetta RPC PIU Interfaces Document Part II Data-Handling Interfaces, Issue 2, Revision 2, 5th October 2000, Imperial College, Réf. RPC/PIU/RP/0/990452/IC
- AD 10. DDID- Data Delivery Interface Document RO-ESC-IF-5003 Issue B6 23/10/2003

1.6 Relationships to Other Interfaces

No products, software and documents would be affected by a change in this EAICD.

1.7 Acronyms and Abbreviations

DDS	Data disposition system (ESA server)
DFT	Direct Fourier Transform
EAICD	Experiment to Archive Interface Control Document
FFT	Fast Fourier Transform
FM	Flight Model

Document No. : RPC-MIP-EAICD

: 1.3 Issue/Rev. No.

: 04 June 2015 : 5 Date

Page

FPGA	Field Programmable Gate Array
FS	,
. •	Flight Spare
GRM	Ground Reference Model
GSE	Geocentric Solar Ecliptic
GSM	Geocentric Solar Magnetic
HK	House keeping
LAP	Langmuir probe instrument
LDL	Long Debye Length
LPC2E	Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (Orléans)
MIP	Mutual Impedance Probe
MSO	Mars Solar Orbital
OBDH	On Board Data Handling
ОВТ	On Board Time
OOBT	Orbiter On Board Time
ONERA	Office National d'Etudes et de Recherches Aérospatiales.
PDS	Planetary Data System
PIU	Plasma Interface Unit
PSA	Planetary Science Archive
QM	Qualification Model
RPC	Rosetta Plasma Consortium
SC	Science
SM	Solar Magnetic system
UTC	Universal Time Coordinated

1.8 Contact Names and Addresses

Jean-Pierre Lebreton Jean-Pierre.Lebreton(at)cnrs-orleans.fr +33 2 38 25 52 57

Pierre Henri Pierre.Henri(at)cnrs-orleans.fr +33 2 38 25 52 42

Xavier Vallières Xavier.Vallieres(at)cnrs-orleans.fr +33 2 38 25 78 27

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 6

Dominique Lagoutte
Dominique.Lagoutte(at)cnrs-orleans.fr
+33 2 38 25 76 22

The address for all the members of the MIP team is

LPC2E/CNRS 3A avenue de la Recherche Scientifique 45071 Orléans cedex 2, France Fax: +33 2 38 63 12 34

2 Overview of Instrument Design, Data Handling Process and Product Generation

The instrument is composed of two main elements:

- a sensor unit and
- an electronics board.

The sensor is mounted on the upper boom. The electrode array is linear and includes one receiving dipole (R1 - R2) and two transmitting monopoles (T1 and T2) supported by a conductive bar, about 1 m in length and 2 cm in diameter. In its active mode, MIP can be operated with different transmitting configurations:

- T1 and T2 can be used as transmitters, independently or conjointly in phase or anti-phased.
 Due to its technical principle, this enables to properly analyze plasmas with Debye length lower than a few tens of cm and give rise to the so-called Short Debye Length mode.
- To overcome this limit, the Long Debye Length mode has been implemented. In this mode, one of the two Langmuir probes of the LAP instrument (LAP2) is used as a transmitter, enabling plasmas with Debye length up to ~2m to be investigated.

The orientation of the MIP sensor with respect to the S/C is also given in the SPICE FK kernel ROS_VXX.TF (XX is the version) which can be found in the PSA SPICE volume ROS-E-M-A-C-SPICE-6-V1.0 (http://www.rssd.esa.int).

In its passive mode, this instrument has also the capability of a plasma wave analyser.

The electronics board is located inside the RPC-0 box. It assumes four functions:

- acquisition of the analog signal from 7 kHz to 3.5 MHz
- data processing using FFT and DFT calculations and some mathematical functions
- a FPGA controls the frequency synthesis and the data storage
- a second FPGA manages the transfer protocol (IEEE 1355) with the PIU.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 7

2.1 Scientific Objectives

The RPC-MIP measures the electron density and temperature and determines the bulk velocity of the ionised outflowing atmosphere, under certain circumstances. The investigation of these plasma parameters will contribute to our understanding of the ionisation, thermalisation and expansion of the cometary atmosphere. Observing the variability of the electron density, temperature and drift velocity will provide an additional insight into the scale length of the gas jets and lead to possible correlative studies with the results obtained from Rosetta's particle and optical instruments.

MIP's additional goals include defining the spectral distribution of natural plasma waves in the frequency range from 7 kHz to 3.5 MHz, and monitoring the dust and gas activities.

The scientific rationale underpinning the RPC-MIP archive is as follows:

- Maximize the scientific return from the experiment by making available the data to the world-wide scientific community.
- Ensure that the unique data set returned by RPC-MIP is preserved in a stable, long-term archive for scientific analysis beyond the end of the Rosetta mission.
- Provide this archive as a part of the valuable contribution by ESA and the Rosetta science community to the exploration of comets.

2.2 Data Handling Process

The SONC is responsible for MIP data sets generation and delivery to the PSA.

The MIP telemetry data is provided by the ESA DDS (Data Distribution Server). Following the operations plan the SONC pulls out archived packets (SC and HK) by direct request to the DDS via FTP and stores them into SONC database.

The raw data are passed through the SONC data processing software for decommutation, conversion to physical values and calibration. The calibrated data are also stored into SONC database.

Data levels as defined in Archive plan	
Calibrated science (SC) and housekeeping (HK) data	CODMAC 3
Derived higher-level data products	CODMAC 5

Note that for RPC-MIP the raw data are already calibrated in physical units.

The 'Edited raw data' are:

- science data (electric field spectra with modulus and phase and resonance values in active mode, electric field spectra with modulus in passive mode, mean passive power inside a particular frequency bandwidth) for both SDL and LDL modes
- house-keeping data (sequence counters, mean passive power, resonance values, sensor temperature, configuration table)

The "Derived higher-level data products" are:

- Electron density (in m⁻³)
- Electron Temperature (in K)

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 8

Geometrical and important housekeeping information is associated with these data. It is stored in the index table and mentioned in the label. If this information is not available when archiving derived data, the index files will be updated later. In this case a note in the labels will precise: "The geometrical and housekeeping values represent the best knowledge at YYYY-MM-DD. Updated values can be found in the index table <filename>.TAB".

2.3 Overview of Data Products

2.3.1 Pre-Flight Data Products

LPC2E shall provide data from ground tests in a plasma chamber at ONERA and representative tests on the GRM.

2.3.2 Instrument Calibrations

Data produced on board are already calibrated (active and passive sweeps). At each switching on a calibration sequence is ran. First an auto-loop process connects directly the transmitted signal to the analogue reception inside the RPC-MIP board; thus one can verify that the levels are correct at every frequency. Second a short FFT is processed on given values to verify that FFT calculation is correct.

2.3.3 Determination of the electron density and temperature

Electron plasma density and temperature are derived from the frequency response modulus and phase of the mutual impedance, using results from plasma environment simulations and from a model of the RPC-MIP response (TROTIGNONETAL2009).

2.3.4 In-Flight Data Products

The main structure of the data products is the same for all mission phases. RPC-MIP in flight data products cover 2 levels:

- <u>Calibrated SC data</u> (CODMAC level 3): contains (i) HK data, amplitudes and frequencies of the electric field spectrum from 7 kHz up to 3.5 MHz in passive mode and (ii) HK data, amplitudes, phases and frequencies of the electric field in active mode. The SONC will produce and deliver the level 3 data to PSA after the proprietary period. A level 3 file contains data from one MIP measurement, i.e. data associated to one configuration table.
- <u>Calibrated HK data</u> (CODMAC level 3): contains HK type I data concerning the active and passive sweeps: MIP power in Passive mode, resonance power in active mode, resonance frequency in active mode.
- Reduced (or derived) data (CODMAC level 5): electron density and temperature in relation
 with spacecraft attitude. The LPC2E will produce and deliver the level 5 data to PSA without
 time constraint (i.e. when ready).

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 9

2.3.5 Software

Level 3 data software has been developed under the responsibility of LPC2E. It is run at SONC with maintenance performed by LPC2E.

Level 5 data software is developed and operated at LPC2E. It consists of data visualizations and density determination; the latter could not be fully automatic and needs scientific expertise.

None of these software packages is planned to be distributed in the archives.

2.3.6 Documentation

The documentation directory contains the following documents:

RPC-MIP EAICD, Ed. 1, Rev. 2, 04/03/2009 (this document) MIP experiment Onboard Data Handling, Ed. 3, Rev. 4, 20/09/2000, MIP/PIU Data Handling Interface, Ed. 3, Rev. 3, 23/05/2001, RPC-MIP experiment description, 28/06/2008 Rosetta plasma consortium users' manual, Ed. 2, Rev. 08, 10/04/2006 User Guide, Ed. 1.0, 04/06/2015

2.3.7 Derived and other Data Products

LPC2E will produce derived data from RPC-MIP data (TBD).

2.3.8 Ancillary Data Usage

RPC-MIP will use orbit, attitude and event data for the high level data products.

3 Archive Format and Content

3.1 Format and Conventions

Data processing level number used in MIP naming scheme conforms to CODMAC norm :

- 3: Calibrated Data: Edited data that are still in units produced by instrument, but that have been corrected so that values are expressed in or are proportional to some physical unit such as radiance. No resampling, so edited data can be reconstructed = NASA Level 1A.
- 5: Derived Data: Derived results, as maps, reports, graphics, etc = NASA Levels 2 through 5.

3.1.1 Deliveries and Archive Volume Format

A data set will be delivered for each **simple mission phase**. Each data set will contain **only one level data processing**.

The list of simple mission phases is given in [AD 5] §2.1, table 3(a).

A level 3 data set contains SC an HK calibrated data.

A level 5 data set contains derived data.

In addition a data set will contain documentation(see chapter 2.3.5)

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 10

A new dataset version is provided when:

- calibration information refining
- new data processing algorithms are implemented

A new dataset is provided when producing data of higher levels.

3.1.2 Data Set ID Formation

The following naming formation scheme will be used for the data sets:

DATA_SET_ID = <INSTRUMENT_HOST_ID>-<target id>-<INSTRUMENT_ID>-<data processing level number>-<mission phase abbreviation>-<version>

DATA_SET_NAME = <INSTRUMENT_HOST_NAME> <target name> <INSTRUMENT_ID> <data processing level number> <mission phase abbreviation> <version>

See AD 5 §2.1.1, §2.1.2.

Examples of DATA_SET_ID and DATA_SET_NAME for MIP level 3 data obtained from the Comet phase :

DATA SET ID = "RO-C-RPCMIP-3-COM-V1.0"

DATA_SET_NAME= "ROSETTA-ORBITER 67P RPCMIP 3 COM V1.0"

3.1.3 Data Directory Naming Convention

The DATA directory of each data set is divided in subdirectories corresponding to years and months. The following tree represents the structure of the DATA directory

3.1.4 Filenaming Convention

Each MIP file contains data from one measurement session (period between instrument ON and instrument OFF). One session can be determined using the time difference between successive (chronomogicaly) data (spectra, configuration tables or HK parameters). If this difference is greater than 100 minutes than we consider that a new session begins and a new file is created. We define the filenaming convention for SC, HK type I data and configuration tables:

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 11

RPCMIP{data characteristics}_{begin of observation}_{duration of observation }.{ext}

- data characteristics (4 characters) = abcd
 - o a = data type, S (science) or H (housekeeping)
 - o b = data level, 3 or 5
 - c = physical parameters
 - E = electric field power spectrum (passive)
 - W = Active power spectrum (induced electric field)
 - H = active phase spectrum (induced electric field)
 - D = electron density
 - T = electron temperature
 - X = N/A (for HK and configuration tables)
 - o d = working mode
 - S = SDL (MIP), Short Debye Length. MIP does the transmission and reception in Sweep and Survey modes
 - L = LDL (MIP/LAP), Long Debye Length. LAP does the transmission and MIP the reception.
 - X = N/A (for HK and configuration tables)
- begin of observation (10 characters) = time of test or working session vymmddhhmn:
 - o yy = year
 - o mm = month
 - o dd = day
 - o hh = hour
 - o mn = minute
- duration of observation (5 characters) = duration of MIP session in minutes.
- ext = extension of file, TAB

Examples

- Science data: RPCMIPS5ES 0610122510 04520.TAB
- Hosekeeping data: RPCMIPH3XX_0610122510_04520.TAB

Remark: The configuration tables will appear in files of type S3XX

Example: RPCMIPS3XX 0610122510 04520.TAB

3.2 Standards Used in Data Product Generation

3.2.1 PDS Standards

The MIP archive complies with the version 3.6 of the PDS standard.

3.2.2 Time Standards

The time standards used in the MIP data products are :

- the Orbiter On-Board Time (OOBT)
- the UTC (from the DDS header time correlated)

3.2.2.1.1 The Orbiter On-Board Time (OOBT)

It is a linear binary counter having a resolution of 1/65536 sec stored in 3 16-bit words in the telemetry source packets header. The OOBT is based on the spacecraft High Frequency Clock.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page : 12

3.2.2.1.2 The UTC and the DDS header time correlated

The OOBT is converted to UTC (Coordinated Universal Time) by means of time correlation and included in the additional DDS packet header when the packets are distributed via the DDS server. The **DDS header time correlated** (SCET field in the DDS header) is the UTC of the start of measurement derived from the OOBT by time correlation.

Its format is the Sun Modified Julian Time (MJT) i.e. two 32 bit integers. The first (MSB) contains the number of seconds since 00:00:00 on 1st January 1970 and the second (LSB) integer the number of micro-seconds from seconds in the first field.

Time correlation is described in AD 10 (Appendix 18 § 18.1.2.1)

The <u>UTC</u> used as time stamp for MIP SC, HK and configuration tables products is the DDS header time correlated.

3.2.3 Reference Systems

RPC-MIP provides scalar in situ measurements, not linked to any reference system.

3.3 Data Validation

The MIP data products are delivered to PSA by SONC. Data will be scanned for internal consistency when decommutating to edited raw format. Derived data, when possible, will be compared to independent measurements by other instruments, i.e. temperatures and densities from RPC-LAP. Before archiving a data set from some mission phase, this set will have been used internally by RPC scientists and engineers. These data are also distributed via the W3-SONC server and used by all the experiment team.

3.3.1 Data Quality ID

The values of the DATA_QUALITY_ID for CODMAC level 3 data:

- -1 not yet qualified
- O Good quality (number of reliable points > 75%)
- 1 Acceptable quality (number of reliable points > 50% and < 75%)
- 2 Bad quality (number of reliable points < 50%)

The values of the DATA_QUALITY_ID for CODMAC levels 5 data:

- -1 not yet qualified
- Good quality Unambiguous determination (number of reliable points > 75%)
- Acceptable quality Difficulties encountered in the determination (number of reliable points > 50% and < 75%)
- 2 Bad quality Possible errors in the determination (number of reliable points < 50%)

3.4 Content

3.4.1 Volume Set

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 13

One volume corresponds to one data set.

```
DESCRIPTION = "This volume contains ..."

VOLUME_ID = "ROMIP_1002"

VOLUME_NAME = "RPCMIP CALIBRATED DATA FOR THE FIRST EARTH FLYBY"

VOLUME_SERIES_NAME = "ROSETTA SCIENCE ARCHIVE"

VOLUME_SET_ID = "FR_CNRS_LPCE_ROMIP_1000"

VOLUME_SET_NAME = "ROSETTA RPC MIP DATA"

VOLUME_VERSION_ID = "VERSION 1"

VOLUMES = "1"

VOLUMES = "1"

VOLUME_FORMAT = "ISO-9660"

MEDIUM_TYPE = "ONLINE"

PUBLICATION_DATE = 2010-01-25
```

3.4.2 Data Set

The MIP data will be archived in as many data sets as simple mission phase and data processing levels. The following table shows how the DATA_SET_ID and DATA_SET_NAME are formed.

Name element	Data Set ID	Data Set Name
INSTRUMENT_HOST_ID / INSTRUMENT_HOST_NAME	RO	ROSETTA-ORBITER
Target id / target name	See AD 5 Table 5	
INSTRUMENT_NAME	ROSETTA PLASMA CONSC	DRTIUM - MUTUAL IMPEDANCE PROBE
INSTRUMENT_ID	RPCMIP	
Data processing level number	* Level 3 contains level 3 SC * Level 5 contains the derived	
mission phase abbreviation	See AD 5 table 3	
Description	N/A	
version	The first version of a data set	is V1.0

3.4.3 Directories

A MIP data set has the following directory structure:

```
|-AAREADME.TXT
|-CATALOG--
| | |-MAR-
| |-2004-|-APR-
| | | | |-DEC-
| |-root directory-| | |-JAN-
| |-2005-|-FEB-
| | | |-....
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 14

| | -DEC-| ... | | -JAN-| -2014-|-FEB-| ... | -DEC-|-|-DOCUMENT--|-INDEX--|-LABEL-|-VOLDESC.CAT

3.4.3.1 Root Directory

Files in the Root Directory include an overview of the archive, a description of the volume for the PDS Catalog, and a list of errata or comments about the archive. The following files are contained in the Root Directory.

File Name	File Contents
AAREADME.TXT	Volume content and format information
VOLDESC.CAT	A description of the contents of this volume in a PDS format readable by both humans and computers

3.4.3.2 Calibration Directory

Ther is no calibration directory for RPC-MIP data sets.

3.4.3.3 Catalog Directory

The files in the Catalog Directory provide a top-level understanding of the mission, spacecraft, instruments, and data sets. The files in this directory are coordinated with the PSA team, who is responsible for loading them into the PDS catalog. The Catalog Directory contains the following files.

File Name	File Contents
CATINFO.TXT	A description of the contents of this directory
DATASET.CAT	Data set information for the PDS catalog
INST.CAT	Instrument information for the PDS catalog
INSTHOST.CAT	Instrument host (spacecraft-Orbiter) information for the PDS catalog
MISSION.CAT	Mission information for the PDS catalog
PERSON.CAT	PDS personnel catalog information about the instrument team responsible for generating the data products. There will be one file for each instrument team providing data to this data set.
REF.CAT	Full citations for references mentioned in any and all of the catalog files, or in any associated label files.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page : 15

File	e Name	File Contents
SO	FTWARE.CAT	Information about the software included in the SOFTWARE directory

3.4.3.4 Index Directory

Files in the Index Directory are provided to help the user locate products on this archive volume and on previously released volumes in the archive. The following files are contained in the Index Directory.

3.4.3.4.1 Dataset Index File, INDEX.LBL and INDEX.TAB

File Name	File Contents
INDXINFO.TXT	A description of the contents of this directory
INDEX.LBL	A PDS detached label that describes INDEX.TAB
INDEX.TAB	A table listing all data products on this volume

3.4.3.4.2 Geometric Index File

The following Geometry index files will be created, according to reference targets. They are available in a general dataset TBD

File Name	File Contents
GEO_EARTH.LBL	A PDS detached label that describes GEO_EARTH.TAB
GEO_EARTH.TAB	A table listing the geometric index parameters for reference target EARTH
GEO_MARS.LBL	A PDS detached label that describes GEO_MARS.TAB
GEO_MARS.TAB	A table listing the geometric index parameters for reference target MARS
GEO_STEINS.LBL	A PDS detached label that describes GEO_STEINS.TAB
GEO_STEINS.TAB	A table listing the geometric index parameters for reference target STEINS
GEO_LUTETIA.LBL	A PDS detached label that describes GEO_LUTETIA.TAB
GEO LUTETIA.TAB	A table listing the geometric index parameters for reference target LUTETIA

3.4.3.5 Browse Directory and Browse Files

The structure of the Browse directory is similar to the structure of the Data directory, i.e. it is sub-divided by year and then by month.

Browse files will be produced only for the comet phase.

Will be defined for the comet phase (TBD).

3.4.3.6 Geometry Directory

TBD

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 16

3.4.3.7 Software Directory

There is no software provided in the software directory. However software for conversion of TAB files in CSV format is provided in the extras directory.

3.4.3.8 Label Directory

The label directory contains include files referenced by data files on the data set, e.g. FMT files containing label definitions used in data label files. The following files are contained in the Label directory.

File Name	File Contents
MIP_SPECTRUM_SS_PO.FMT	The description of the spectrum table for the
	Survey/Sweep modes and Full, Window and MinMax sub-
	modes.
MIP_SPECTRUM_SS_PH.FMT	The description of the structure of the TABLE object for
	the Phase spectrum for the Survey/Sweep modes.
MIP_SPECTRUM_L_PO.FMT	The description of the power spectrum table for the LDL
	modes, Full/Window sub-modes
MIP_SPECTRUM_L_PH.FMT	The description of the phase spectrum table for the LDL
	modes, Full/Window sub-modes
MIP SPECTRUM P PO.FMT	The description of the spectrum table for the Passive
	mode and Full, Window and Power sub-modes
MIP_CONFIG_TABLE.FMT	The description of the TABLE object for the MIP
	configuration table
MIP_CALIBRATED_HK.FMT	The description of the TABLE object for MIP calibrated HK
	data

3.4.3.9 Document Directory

The Document Directory contains documentation to help the user understand and use the archive data. The following files are contained in the Document Directory.

File Name	File Contents		
DOCINFO.TXT	A description of the contents of this directory		
MIP_EXP_OVERVIEW.PDF	Description of the RPCMIP experiment		
MIP_EXP_OVERVIEW.LBL	PDS label for file MIP_EXP_OVERVIEW.PDF		
RPC-MIP_EAICD.PDF	The MIP Experiment Archive Interface Control Document (this document) as an PDS file.		
RPC-MIP_EAICD.LBL	PDS label for file RPC-MIP_EAICD.PDF		
BOARD_PROC_34.PDF	MIP Onboard Data Handling		
BOARD_PROC_34.LBL	PDS label for file BOARD_PROC_34.PDF		
MIP_PIU_INTERF_33.PDF	MIP/PIU Data Handling Interface in PDF format		
MIP_PIU_INTERF_33.LBL	PDS label for file MIP_PIU_INTERF_33.PDF		
RPC_UM_208.PDF	Rosetta plasma consortium users' manual		
RPC_UM_208.LBL	PDS label for file RPC_UM_208.PDF		

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page : 17

3.4.3.10 Extras Directory

The Extras directory contains software to convert the RPC-MIP data (.TAB files) to CSV (commaseparated values) format. The software (convert_pds_rpcmip.exe) is an executable compiled under SunOS 5.10.

The command line syntax is:

convert pds rpcmip.exe -d=<directory>

<directory> is the name of the directory containing the TAB/LBL files.

3.4.3.11 Data Directory

The structure and naming scheme of the data directory is described in § 3.1.3.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 18

4 Detailed Interface Specifications

4.1 Structure and Organization Overview

The MIP data will be archived in a data set on the basis data processing level and mission phase relative to the production of the data. The DATA directory contains subdirectories corresponding to years and months. The subdirectories contain calibrated SC and HK data (file extension TAB)

4.2 Data Sets, Definition and Content

The following table gives the definition of the name and id of the foreseen data sets:

Data Set ID	Data Set Name			
RO-CAL-RPCMIP-3-GRND-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 GRND V1.0			
RO-CAL-RPCMIP-3-CVP-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 CVP V1.0			
RO-CAL-RPCMIP-3-CR2-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 CR2 V1.0			
RO-CAL-RPCMIP-3-CR4A-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 CR4A V1.0			
RO-CAL-RPCMIP-3-CR4B-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 CR48 V1.0			
RO-CAL-RPCMIP-3-CR5-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 CR5 V1.0			

RO-E-RPCMIP-3-EAR1-V1.0	ROSETTA-ORBITER EARTH RPCMIP 3 EAR1 V1.0			
RO-E-RPCMIP-3-EAR2-V1.0	ROSETTA-ORBITER EARTH RPCMIP 3 EAR2 V1.0			
RO-E-RPCMIP-3-EAR3-V1.0	ROSETTA-ORBITER EARTH RPCMIP 3 EAR3 V1.0			
RO-M-RPCMIP-3-MARS-V1.0	ROSETTA-ORBITER MARS RPCMIP 3 MARS V1.0			
RO-A-RPCMIP-3-AST1-V1.0	ROSETTA-ORBITER STEINS RPCMIP 3 AST1 V1.0			
RO-A-RPCMIP-3-AST2-V1.0	ROSETTA-ORBITER LUTETIA RPCMIP 3 AST2 V1.0			
RO-CAL-RPCMIP-3-RVM1-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 RVM1 V1.0			
RO-CAL-RPCMIP-3-RVM2-V1.0	ROSETTA-ORBITER CAL RPCMIP 3 RVM2 V1.0			
RO-C-RPCMIP-3-COM-V1.0	ROSETTA-ORBITER 67P RPCMIP 3 COM V1.0			
RO-CAL-RPCMIP-5-GRND-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 GRND V1.0			
RO-CAL-RPCMIP-5-CVP-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 CVP V1.0			
RO-CAL-RPCMIP-5-CR2-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 CR2 V1.0			
RO-CAL-RPCMIP-5-CR4A-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 CR4A V1.0			
RO-CAL-RPCMIP-5-CR4B-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 CR4B V1.0			
RO-CAL-RPCMIP-5-CR5-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 CR5 V1.0			
RO-E-RPCMIP-5-EAR1-V1.0	ROSETTA-ORBITER EARTH RPCMIP 5 EAR1 V1.0			
RO-E-RPCMIP-5-EAR2-V1.0	ROSETTA-ORBITER EARTH RPCMIP 5 EAR2 V1.0			
RO-E-RPCMIP-5-EAR3-V1.0	ROSETTA-ORBITER EARTH RPCMIP 5 EAR3 V1.0			
RO-M-RPCMIP-5-MARS-V1.0	ROSETTA-ORBITER MARS RPCMIP 5 MARS V1.0			
RO-A-RPCMIP-5-AST1-V1.0	ROSETTA-ORBITER STEINS RPCMIP 5 AST1 V1.0			
RO-A-RPCMIP-5-AST2-V1.0	ROSETTA-ORBITER LUTETIA RPCMIP 5 AST2 V1.0			
RO-CAL-RPCMIP-5-RVM1-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 RVM1 V1.0			
RO-CAL-RPCMIP-5-RVM2-V1.0	ROSETTA-ORBITER CAL RPCMIP 5 RVM2 V1.0			
RO-C-RPCMIP-5-COM-V1.0	ROSETTA-ORBITER 67P RPCMIP 5 COM V1.0			

The mission phases are defined in the following table.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 19

MISSION_PHASE_NAME	Abbreviation	Start Date (dd/mm/yyyy)	End Date (dd/mm/yyyy)	RPCMIP data (1)
Commissioning (part 1)	CVP1	05/03/2004	06/06/2004	Х
Cruise 1	CR1	07/06/2004	05/09/2004	
Commissioning (part 2)	CVP2	06/09/2004	16/10/2004	X
Earth Swing-by 1 (including PC#0)	EAR1	17/10/2004	04/04/2005	X
Cruise 2 (including PC#1,2)	CR2	05/04/2005	28/07/2006	X
Mars Swing-by (including PC#3,4,5)	MARS	29/07/2006	28/05/2007	Х
Cruise 3	CR3	29/05/2007	12/09/2007	
Earth Swing-by 2 (including PC#6,7)	EAR2	13/09/2007	27/01/2008	X
Cruise 4-1 (including PC#8)	CR4A	28/01/2008	03/08/2008	X
Steins Flyby	AST1	04/08/2008	05/10/2008	Х
Cruise 4-2 (including PC#9)	CR4B	06/10/2008	13/09/2009	X
Earth Swing-by 3 (including PC#10)	EAR3	14/09/2009	13/12/2009	Х
Cruise 5 (including PC#12)	CR5	14/12/2009	06/06/2010	Х
Lutetia Flyby	AST2	07/06/2010	10/09/2010	Х
RV Manoeuver 1 (including PC#13)	RMV1	11/09/2010	13/07/2011	Х
Cruise 6	CR6	14/07/2011	22/01/2014	
RV Manoeuver 2	RVM2	23/01/2014	17/08/2014	X (tbc)
Comet	COM	18/08/2014	31/12/2015	X (tbc)

(1) The last column indicates if RPCMIP data are available (and if data can come from Payload Checkout).

4.3 Data Product Design

4.3.1 Data Product Design of calibrated SC data (level 3)

Level 3 SC contains calibrated MIP power and phase spectra, with PDS detached labels. Each power spectrum is composed of several frequency sweeps. However, the MIP on-board software generates a single time tag for the entire spectrum. In the PSA the spectra are represented as tables with frequency and power in separate columns. The spectrum time tag is recorded in a separate column and is repeated for the whole frequencies of a spectrum. This representation was chosen in order to avoid variable length records. It allows fixed length records (RECORD_TYPE=FIXED_LENGTH) which should be easier to read by other software.

In "passive" modes the power is coded on-board on 2 bits (0 to 20 db) or 4 bits (0 to 60 dB). This gives integer power steps (2 or 4 dB digitization steps). In "survey" modes the power is coded on 8 bits (0 to 64 dB) giving 0.25 dB digitization steps. However, the power values are always listed as ASCII_REAL with format F7.2 in order to have the same format in different data files.

In passive modes the effective length of antenna is needed in order to obtain the electrical field in appropriate units. However, obtaining the effective length of the antenna is not trivial and is subject to discussion, this length depending on the characteristics of the plasma. That is why the power is given in decibels relative to 0.6 μ V.Hz^{-1/2}.

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page : 20

The frequency values are expressed in kHz. They are onboard coded with the same rule as for the interference frequency in the configuration table:

RPC-MIP-EAICD

4.3.1.1 File Characteristics Data Elements

The PDS file characteristic data elements for MIP calibrated science data (level 3) are:

```
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =
FILE_RECORDS =
PRODUCT_TYPE = RDR
PROCESSING LEVEL ID = 3
```

The FILE NAME is described in § 3.1.4

4.3.1.2 Data Object Pointers Identification Data Elements

The MIP level 3 SC data are organized as ASCII tables. The data object pointers (^TABLE) reference TAB files. The data contains power and phase spectra.

4.3.1.3 Data Object Definition

Each data file (TAB) contains several tables. The number of tables is variable and depends on the type of measurement (sequence).

The description of the spectrum table for the Survey/Sweep modes and Full, Window and MinMax submodes is:

Power spectrum

```
OBJECT = SS_PO_SPECTRUM_TABLE

NAME = "SS_PO_SPECTRUM"

INTERCHANGE_FORMAT = ASCII

ROWS = COLUMNS = 8

ROW_BYTES = "MIP_SPECTRUM_SS_PO.FMT"

END_OBJECT = SS_PO_SPECTRUM_TABLE
```

The structure of the TABLE object for the Power spectrum is described in the file MIP_SPECTRUM_SS_PO.FMT as follows:

```
OBJECT
                        = COLUMN
  NAME
                        = "SPECTRUM UT"
   DATA TYPE
                        = TIME
   START BYTE
                        = 23
   BYTES
                        = "N/A"
   UNIT
                        = "Spectrum UT
   DESCRIPTION
                           Format : YYYY-MM-DDThh:mm:ss.sss"
END OBJECT
                       = COLUMN
```

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3

Date : 04 June 2015

```
OBJECT
                       = COLUMN
                      = "SPECTRUM OBT"
  NAME
  DATA TYPE
                      = CHARACTER
   START BYTE
                       = 26
  BYTES
                       = 17
  UNIT
                       = "N/A"
  MISSING CONSTANT
                       = " 9/999999.99999"
                       = "Spectrum On board Time :
  DESCRIPTION
                           OOBT IS REPRESENTED AS :
                           Reset number (integer starting at 1) / seconds. Reset number 1 starts at 2003-01-01T00:00:00 UTC
                           The time resolution is 1/65536 s "
END OBJECT
                       = COLUMN
OBJECT
                       = COLUMN
                       = "MODE"
  NAME
                       = CHARACTER
   DATA TYPE
  START BYTE
                       = 46
                       = 6
  BYTES
                       = "N/A"
  UNIT
                        = "Possible values are :
   DESCRIPTION
                           SURVEY
                           SWEEP"
END_OBJECT
                       = COLUMN
OBJECT
                       = COLUMN
                       = "SUB MODE"
  NAME
  DATA TYPE
                       = CHARACTER
   START BYTE
                      = 55
  BYTES
                       = 6
                       = "N/A"
  UNIT
                       = " Possible values are :
   DESCRIPTION
                           FULL
                           WINDOW"
END OBJECT
                       = COLUMN
OBJECT
                      = COLUMN
  NAME
                      = "SPECTRUM TYPE"
  DATA TYPE
                      = CHARACTER
   START BYTE
                       = 64
  BYTES
                       = "N/A"
   UNIT
                       = " Possible values are :
   DESCRIPTION
                          POWER
                           PHASE "
END_OBJECT
                       = COLUMN
OBJECT
                       = COLUMN
                       = "RES_FREQ"
  NAME
   DATA TYPE
                       = ASCII INTEGER
                       = 71
   START BYTE
                       = 7
  BYTES
                       = "KILOHERTZ"
  UNIT
                      = "I7"
   FORMAT
  MISSING_CONSTANT = 9999999
                      = "Resonance frequency
   DESCRIPTION
                          MISSING CONSTANT in case of minmax sub-mode"
END_OBJECT
                       = COLUMN
                       = COLUMN
 OBJECT
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page : 22

```
NAME
                    = "FREQUENCY"
                   = ASCII_INTEGER
 DATA TYPE
 START_BYTE
                   = 79
                    = 7
 BYTES
                   = "KILOHERTZ"
 UNIT
                    = "I7"
 FORMAT
                  = "Frequency"
 DESCRIPTION
END OBJECT
                    = COLUMN
OBJECT
                    = COLUMN
                   = "POWER"
 NAME
                  = ASCII_REAL
= 87
 DATA TYPE
 START BYTE
 BYTES
                    = 7
                   = "DECIBEL"
 UNIT
 FORMAT
                    = "F7.2"
 DESCRIPTION
                    = "Power
                       0 dB = 0.6 microV*Hz**-0.5"
END OBJECT
                    = COLUMN
```

Phase Spectrum

```
OBJECT = SS_PH_SPECTRUM_TABLE

NAME = "SS_PH_SPECTRUM"

INTERCHANGE_FORMAT = ASCII

ROWS = COLUMNS = 8

ROW_BYTES = "MIP_SPECTRUM_SS_PH.FMT"

END_OBJECT = SS_PH_SPECTRUM_TABLE
```

The structure of the TABLE object for the Phase spectrum is described in the file MIP_SPECTRUM_SS_PH.FMT as follows:

```
OBJECT
                       = COLUMN
                       = "SPECTRUM_UT"
  NAME
   DATA TYPE
                       = TIME
   START BYTE
                       = 1
                       = 23
  BYTES
  UNIT
                       = "N/A"
                       = "Spectrum UT
  DESCRIPTION
                          Format : YYYY-MM-DDThh:mm:ss.sss"
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
                      = "SPECTRUM OBT"
  NAME
  DATA TYPE
                      = CHARACTER
  START BYTE
                       = 26
                       = 17
  BYTES
                       = "N/A"
  UNIT
  MISSING CONSTANT
                       = " 9/9999999.99999"
                       = "Spectrum On board Time :
  DESCRIPTION
                          OOBT IS REPRESENTED AS:
                          Reset number (integer starting at 1) / seconds.
                          Reset number 1 starts at 2003-01-01T00:00:00 UTC
                          The time resolution is 1/65536 s "
END OBJECT
                      = COLUMN
                      = COLUMN
OBJECT
```

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3

: 04 June 2015 Date

: 23 Page

```
= "MODE"
= CHARACTER
   NAME
  DATA_TYPE
START_BYTE
                       = 46
                        = 6
                        = "N/A"
                        = "Possible values are :
   DESCRIPTION
                            SURVEY
                            SWEEP"
END OBJECT
                       = COLUMN
OBJECT
                      = COLUMN
                       = "SUB MODE"
 NAME
                       = CHARACTER
  DATA TYPE
  START BYTE
                       = 55
  BYTES
                        = 6
                         = "N/A"
   UNIT
                        = " Possible values are :
   DESCRIPTION
                            FULL
                            WINDOW"
END_OBJECT
                       = COLUMN
                     = COLUMN
OBJECT
                       = "SPECTRUM_TYPE"
  NAME
   DATA TYPE
                        = CHARACTER
   START_BYTE
                        = 64
   BYTES
                        = "N/A"
   TINT
                        = " Possible values are :
   DESCRIPTION
                           POWER
                            PHASE "
END OBJECT
                       = COLUMN
OBJECT
                      = COLUMN
                      = "RES_FREQ"
= ASCII_INTEGER
= 71
= 7
  NAME
  DATA_TYPE
START_BYTE
  BYTES
                     = "KILOHERTZ"
= "17"
= "Resonance frequency"
= COLUMN
  DESCRIPTION
 END OBJECT
                        = COLUMN
 OBJECT
                      = COLUMN
= "FREQUENCY"
= ASCII_INTEGER
= 79
  NAME
   DATA TYPE
  START BYTE
                       = 7
                       = "KILOHERTZ"
  UNIT
   FORMAT
                      = "I7"
= "Frequency"
  DESCRIPTION
 END OBJECT
                        = COLUMN
                      = COLUMN
= "PHASE"
= ASCII_REAL
= 87
 OBJECT
  NAME
   DATA TYPE
   START BYTE
  BYTES
                       = 7
                     = "DEGREE"
= "F7.2"
= "Phase"
= COLUMN
   UNIT
   FORMAT
   DESCRIPTION
 END OBJECT
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 24

The description of the spectrum table for the LDL modes, Full/Window sub-modes is:

Power spectrum

```
OBJECT = L_PO_SPECTRUM_TABLE

NAME = "L_PO_SPECTRUM"

INTERCHANGE_FORMAT = ASCII

ROWS =
COLUMNS = 7

ROW_BYTES =
^STRUCTURE = "MIP_SPECTRUM_L_PO.FMT"

END_OBJECT = L_PO_SPECTRUM_TABLE
```

The structure of the TABLE object for the Power spectrum is described in the file MIP SPECTRUM L PO.FMT as follows:

```
OBJECT
                       = COLUMN
                       = "SPECTRUM UT"
  NAME
  DATA TYPE
                       = TIME
  START BYTE
                       = 1
  BYTES
                       = 23
                       = "N/A"
  UNIT
                       = "Spectrum UT
  DESCRIPTION
                          Format : YYYY-MM-DDThh:mm:ss.sss"
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
  NAME
                      = "SPECTRUM OBT"
  DATA TYPE
                      = CHARACTER
  START BYTE
                       = 26
  BYTES
                       = 17
                       = "N/A"
  UNIT
                       = " 9/9999999.99999"
  MISSING CONSTANT
                       = "Spectrum On board Time :
  DESCRIPTION
                         OOBT IS REPRESENTED AS :
                          Reset number (integer starting at 1) / seconds.
                          Reset number 1 starts at 2003-01-01T00:00:00 UTC
                          The time resolution is 1/65536 s "
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
                      = "MODE"
  NAME
                      = CHARACTER
  DATA TYPE
  START BYTE
                      = 46
                       = 3
                       = "N/A"
  UNIT
                       = "Possible value is :
  DESCRIPTION
                          LDL "
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
  NAME
                      = "SUB MODE"
  DATA TYPE
                      = CHARACTER
  START BYTE
                      = 52
  BYTES
                       = 6
                       = "N/A"
  UNIT
  DESCRIPTION
                       = "Possible value are :
```

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3

: 04 June 2015 Date

Page : 25

```
WINDOW"
END OBJECT
                     = COLUMN
OBJECT
                    = COLUMN
                     = "SPECTRUM TYPE"
  NAME
  DATA TYPE
                      = CHARACTER
  START_BYTE
                      = 61
  BYTES
                      = "N/A"
  UNIT
                      = "Possible values are :
  DESCRIPTION
                         POWER
                         PHASE "
END OBJECT
                     = COLUMN
                    = COLUMN
OBJECT
                    = "FREQUENCY"
= ASCII_INTEGER
= 68
  NAME
  DATA_TYPE
START_BYTE
                     = 7
  BYTES
                    = "KILOHERTZ"
= "I7"
  UNIT
  FORMAT
                  = "rrc"
  DESCRIPTION
                     = "Frequency"
END OBJECT
OBJECT
                    = COLUMN
                      = "POWER"
  NAME
  DATA_TYPE
START_BYTE
                     = ASCII REAL
                     = 76
  BYTES
                      = 7
                     = "DECIBEL"
  UNIT
  FORMAT
                     = "F7.2"
  DESCRIPTION
                     = "Power
                         0 dB = 0.6 microV*Hz**-0.5"
END OBJECT
                    = COLUMN
Phase Spectrum
```

```
OBJECT
                    = L PH SPECTRUM TABLE
                    = "L PH SPECTRUM"
 NAME
 INTERCHANGE_FORMAT = ASCII
                   = 7
 COLUMNS
 ROW BYTES
                   = "MIP_SPECTRUM_L_PH.FMT"
 ^STRUCTURE
END OBJECT
                   = L PH SPECTRUM TABLE
```

The structure of the TABLE object for the Phase spectrum is described in the file MIP SPECTRUM L PH.FMT as follows:

```
OBJECT
                      = COLUMN
                      = "SPECTRUM UT"
  NAME
  DATA TYPE
                     = TIME
  START BYTE
                     = 1
  BYTES
                     = 23
                     = "N/A"
  UNIT
                     = "Spectrum UT
  DESCRIPTION
                        Format : YYYY-MM-DDThh:mm:ss.sss"
```

Document No. : RPC-MIP-EAICD Issue/Rev. No. : 1.3

: 04 June 2015 Date

```
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
                     = "SPECTRUM OBT"
  NAME
                     = CHARACTER
  DATA TYPE
  START BYTE
                      = 26
  BYTES
                       = 17
  UNIT
                      = "N/A"
                       = " 9/9999999.99999"
  MISSING CONSTANT
                       = "Spectrum On board Time :
  DESCRIPTION
                          OOBT IS REPRESENTED AS:
                          Reset number (integer starting at 1) / seconds.
                          Reset number 1 starts at 2003-01-01T00:00:00 UTC
                          The time resolution is 1/65536 s "
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
                      = "MODE"
  NAME
                      = CHARACTER
  DATA TYPE
                      = 46
  START BYTE
                      = 3
  BYTES
                      = "N/A"
                      = "Possible value is :
  DESCRIPTION
                         LDL "
END OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
                    = "SUB_MODE"
= CHARACTER
= 52
  NAME
  DATA TYPE
  START BYTE
  BYTES
                      = 6
                      = "N/A"
  UNIT
                       = "Possible value are :
  DESCRIPTION
                          FULL
                          WINDOW"
END OBJECT
                      = COLUMN
OBJECT
                     = COLUMN
  NAME
                     = "SPECTRUM TYPE"
  DATA TYPE
                     = CHARACTER
  START BYTE
                       = 61
  BYTES
                       = "N/A"
  UNIT
                       = "Possible values are :
  DESCRIPTION
                         POWER
                          PHASE "
END_OBJECT
                      = COLUMN
OBJECT
                      = COLUMN
                      = "FREQUENCY"
  NAME
  DATA TYPE
                      = ASCII INTEGER
  START BYTE
                      = 68
                      = 7
  BYTES
                     = "KILOHERTZ"
  UNIT
                     = "17"
  FORMAT
                    = "Frequency"
  DESCRIPTION
                      = COLUMN
END OBJECT
OBJECT
                      = COLUMN
                    = "PHASE"
  NAME
                      = ASCII_REAL
  DATA TYPE
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

: 04 June 2015 Date

Page : 27

= 76 START BYTE = 7 BYTES = "DEGREE" UNTT

= "F7.2" FORMAT = "Phase" DESCRIPTION END OBJECT = COLUMN

The description of the header table for the Passive mode, Full/Window and Power sub-modes is:

= P PO SPECTRUM TABLE = "P PO SPECTRUM" NAME

INTERCHANGE FORMAT = ASCII COLUMNS = 7

= ROW BYTES = "MIP SPECTRUM P PO.FMT" ^STRUCTURE END OBJECT = P_PO_SPECTRUM_TABLE

The structure of the TABLE object for the Power spectrum is described in the file MIP_SPECTRUM_P_PO.FMT as follows:

```
OBJECT
                         = COLUMN
```

= "SPECTRUM UT" NAME

= TIME DATA TYPE START BYTE = 1 BYTES = 23 = "N/A" UNIT

DESCRIPTION = "Spectrum UT

Format : YYYY-MM-DDThh:mm:ss.sss"

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = "SPECTRUM OBT" DATA TYPE = CHARACTER

START BYTE = 26 BYTES = 17 = "N/A" UNIT

MISSING CONSTANT

= "N/A" = " 9/9999999.99999" = "Spectrum On board Time : DESCRIPTION OOBT IS REPRESENTED AS :

> Reset number (integer starting at 1) / seconds. Reset number 1 starts at 2003-01-01T00:00:00 UTC

The time resolution is 1/65536 s "

END OBJECT = COLUMN

OBJECT = COLUMN = "MODE" NAME DATA TYPE = CHARACTER

START BYTE = 46 BYTES = 7 = "N/A" UNIT

= "Possible value is : DESCRIPTION

PASSIVE"

END_OBJECT = COLUMN

OBJECT = COLUMN

= "SUB_MODE" = CHARACTER NAME DATA TYPE

START BYTE = 56

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 28

```
BYTES
                       = "N/A"
  UNTT
                       = " Possible values are :
  DESCRIPTION
                          FULL
                          WINDOW"
END OBJECT
                       = COLUMN
OBJECT
                      = COLUMN
  NAME
                       = "SPECTRUM TYPE"
  DATA TYPE
                       = CHARACTER
  START BYTE
                       = 65
  BYTES
                       = 5
  UNIT
                       = "N/A"
                      = "XXXXXX"
  MISSING CONSTANT
  DESCRIPTION
                       = "Possible values are : POWER or MISSING CONSTANT
                        in case of power sub-mode"
END OBJECT
                       = COLUMN
OBJECT
                      = COLUMN
                       = "FREQUENCY"
  NAME
  DATA TYPE
                       = ASCII INTEGER
  START BYTE
                       = 72
                       = 7
  BYTES
                       = "KILOHERTZ"
  UNIT
                       = "I7"
  FORMAT
                       = "Frequency
  DESCRIPTION
                         For power sub-mode, the central frequency of
                         frequency bandwidth is given:
                         LF part [7-448]: 220
                         HF part [476-3584]: 1554"
END OBJECT
                       = COLUMN
                       = COLUMN
OBJECT
                       = "POWER"
  NAME
                       = ASCII REAL
  DATA TYPE
  START BYTE
                       = 80
                       = 7
  BYTES
                       = "DECIBEL"
  UNIT
                       = "F7.2"
  FORMAT
                       = "Power
  DESCRIPTION
                          0 dB = 0.6 microV*Hz**-0.5"
END OBJECT
                       = COLUMN
```

4.3.1.4 Description of Instrument

The description of the instrument is done in the INST.CAT catalog file.

4.3.2 Data Product Design of MIP Configuration Table data (level 3)

This data product contains information from the MIP configuration table needed to decode the commands which arrive during a science MIP or LDL sequence. This data product has PDS detached labels.

4.3.2.1 File Characteristics Data Elements

The PDS file characteristic data elements for MIP configuration table data (level 3) are:

```
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =
FILE RECORDS =
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 29

```
PRODUCT_TYPE = RDR
PROCESSING LEVEL ID = 3
```

The FILE NAME is described in §3.1.4

4.3.2.2 Data Object Pointers Identification Data Elements

The MIP configuration tables are organized as ASCII tables. The data object pointers (^TABLE) reference TAB files. The data contains instrument configuration.

4.3.2.3 Data Object Definition

Each data file (TAB) contains several tables. The number of tables is variable and depends on the type of measurement (sequence).

The description of the TABLE object for the MIP configuration table:

```
OBJECT = CONFIG_TABLE_TABLE

NAME = "CONFIG_TABLE"

INTERCHANGE_FORMAT = ASCII

ROWS =

COLUMNS = 21

ROW_BYTES =

^STRUCTURE = "MIP_CONFIG_TABLE.FMT"

END OBJECT = CONFIG_TABLE TABLE
```

The structure of the TABLE object is described in the file MIP_CONFIG_TABLE.FMT as follows:

```
= COLUMN
OBJECT
                = "TABLE TIME UTC"
   NAME
    DATA TYPE
               = TIME
    START BYTE
               = 1
   BYTES
                = 23
                = "N/A"
   UNTT
    DESCRIPTION = "This column represents the UTC Time in PDS standard format
                   YYYY-MM-DDThh:mm:ss.sss"
END OBJECT
                = COLUMN
OBJECT
                = COLUMN
                = "TABLE TIME OOBT"
   DATA TYPE
                = CHARACTER
   START BYTE
               = 26
   BYTES
                = 17
                        = " 9/9999999.99999"
   MISSING CONSTANT
   DESCRIPTION = "This column represents the Orbiter On Board Time
                    OOBT IS REPRESENTED AS :
                    Reset number (integer starting at 1) / seconds.
                    Reset number 1 starts at 2003-01-01T00:00:00 UTC
                    The time resolution is 1/65536 s "
                = COLUMN
END OBJECT
OBJECT
                = COLUMN
                = "TABLE TYPE"
  NAME
   DATA TYPE
                = CHARACTER
              = 46
   START BYTE
                = 3
   DESCRIPTION
                = "The type can be:
                   Configuration table containing the
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 30

parameters which can be modified in the onboard software

```
Control sequence used to get a detailed status
                     of the experiment; it contains the configuration table;
                     This field takes one of the following values :
                         CTL
                         TBL"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "TABLE NUMBER"
   NAME
   DATA TYPE
                 = CHARACTER
   \mathtt{STAR}\overline{\mathtt{T}} \mathtt{BYTE}
                 = 52
   BYTES
                 = 12
                 = "N/A"
   FORMAT
                 = "Table number, given in the form {\bf x} of {\bf y} , where :
   DESCRIPTION
                     \boldsymbol{x} is the current number of the table in the PDS file
                     y is the maximum number of tables found in the PDS file"
END OBJECT
                  = COLUMN
OBJECT
                 = COLUMN
                  = "TABLE BYTES HEX"
   NAME
                 = CHARACTER
   DATA TYPE
   START BYTE
                 = 67
   BYTES
                 = 17
   DESCRIPTION
                 = "The configuration table contains all the parameters which
                     can be modified in the onboard software. The size of 6
                     bytes corresponds to one link-packet between PIU and MIP.
                     All the commands are inserted into the table.
                     The Hexadecimal format is used, each byte is separated by
                     a blank character. The description is done below:
                     byte 0
                                bits 4,3
                                          : Interference frequency nr 1
                     byte 1
                                bits 4,3
                                          : Interference frequency nr 2
                     byte 2
                                bits 4,3
                                           : Interference frequency nr 3
                     byte 3
                                bits 7,6
                                          : Transmission level
                                bits 5,4
                                          : Transmitter_odd_sweeps
                                           : Transmitter_even_sweeps
                                bits 3,2
                                bits 3,2
                                           : Extremum threshold
                     byte 4
                                bits 7,6,5 : Sweep_mode_bandwidth
                                bits 4,3,2 : Survey_mode_bandwidth
                                bit 1
                                          : Ampl pas
                                bit 0
                                           : Autoloop
                     byte 5
                                bit 7
                                          : Watchdog
                                bits 6,5,4 : Science_sequence_number
                                bit 3 : LDL_type
                                bit
                                            : Mode
                                bits 1,0 : TM rate"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
   NAME
                 = "INTERF FREQ1"
   DATA_TYPE
                 = ASCII_INTEGER
   START BYTE
                 = 86
                 = 4
   BYTES
```

Issue/Rev. No. : 1.3

Date : 04 June 2015

```
= KILOHERTZ
  UNIT
   FORMAT
                = "I4"
                = " Interference frequency number 1
DESCRIPTION
                     The interference frequencies to be
                     suppressed during the extremum computation in
                     the active modes"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "INTERF FREQ2"
  NAME
   DATA TYPE
                = ASCII INTEGER
   START BYTE
               = 91
  BYTES
                = 4
  UNIT
                = KILOHERTZ
                = "I4"
   FORMAT
   DESCRIPTION = " Interference frequency number 2
                     The interference frequencies to be
                     suppressed during the extremum computation in
                     the active modes"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "INTERF FREQ3"
  NAME
                = ASCII INTEGER
   DATA TYPE
   START_BYTE
                = 96
   BYTES
                = 4
                = KILOHERTZ
  UNIT
                = "14"
   FORMAT
   DESCRIPTION = " Interference frequency number 3
                     The interference frequencies to be
                     suppressed during the extremum computation in
                     the active modes"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                = "TRANSMISSION_LEVEL"
  NAME
               = ASCII REAL
   DATA TYPE
   START BYTE
               = 101
  BYTES
                = 5
                 = "N/A"
  UNTT
   FORMAT
                = "F5.3"
   DESCRIPTION
                 = " The level of the transmission signal
                     Takes one of the following values:
                     1.000 full level (156 mV RMS in MIP mode,
                     30 V RMS in LDL mode)
                     0.500 nominal level (78 mV RMS in MIP mode,
                     15 V RMS in LDL mode)
                     0.250 low level (39 mV RMS in MIP mode,
                     7.5 V RMS in LDL mode)
                     0.125 minimum level (19.5 mV RMS in MIP mode,
                     3.75 V RMS in LDL mode) "
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "TRANSMISSION ODD"
   DATA TYPE
                = CHARACTER
                = 108
   START BYTE
  BYTES
                 = 29
                 = "N/A"
   UNIT
  DESCRIPTION = " selection of the transmitter for all
                     the odd sweeps (1, 3, \ldots)
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

```
Takes one of the following values:
                          mono with E1
                          mono with E2
                          stereo with E1-E2 phased
                          stereo with E1-E2 anti-phased"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "TRANSMISSION EVEN"
   NAME
   DATA TYPE
                 = CHARACTER
                 = 140
   START BYTE
  BYTES
                 = 29
                 = "N/A"
   UNIT
                 = " selection of the transmitter for
   DESCRIPTION
                     all the even sweeps (2, 4, \ldots)
                     Takes one of the following values:
                          mono with E1
                          mono with E2
                          stereo with E1-E2 phased
                          stereo with E1-E2 anti-phased"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "MODE"
  NAME
   DATA_TYPE
                 = CHARACTER
   START BYTE
                 = 172
                 = 9
   BYTES
                 = "N/A"
   TINTT
                 = " selection of a MIP alone mode or LDL mode
   DESCRIPTION
                     The field takes one of the following the values:
                         MIP alone
                         LDL mode"
END OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "AUTOLOOP"
  NAME
               = CHARACTER
   DATA TYPE
   START BYTE
                 = 184
  BYTES
                 = 16
                 = "N/A"
   UNTT
   DESCRIPTION
                = " Autoloop : an auto-loop can be set between emission
                     and reception
                     The field takes one of the following the values:
                         MIP with sensor
                         MIP auto-loop ON"
END_OBJECT
                 = COLUMN
OBJECT
                 = COLUMN
                 = "AMPL_PAS"
  NAME
   DATA_TYPE
                 = ASCII_INTEGER
   START BYTE
                 = 202
                 = 1
  BYTES
                 = DECIBEL
  TINIT
                 = "I1"
   FORMAT
                 = " Coding level for the power spectrum in the
   DESCRIPTION
                     Passive mode
                     The field takes one of the following the values:
                           2 (16 values from 0 to 30 dB)
                           4 (16 values from 0 to 60 dB)
                     0 dB = 0.6 microV*Hz**-0.5"
END OBJECT
                 = COLUMN
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

```
OBJECT
                = COLUMN
                = "EXT THRESHOLD"
  NAME
  DATA TYPE
                = ASCII INTEGER
   START BYTE
                = 204
  BYTES
                = 1
  UNIT
                = DECIBEL
  FORMAT
                = "I1"
  DESCRIPTION
                = " Amplitude threshold for the extremum detection
                    The field takes one of the following the values:
                           2
                           4
                           8
                    0 dB = 0.6 microV*Hz**-0.5"
END OBJECT
                = COLUMN
OBJECT
                = COLUMN
                = "SURVEY BAND"
  NAME
   DATA TYPE
                = ASCII INTEGER
   START BYTE
                = 206
  BYTES
                = 1
                = "N/A"
  UNIT
                = "I1"
   FORMAT
   DESCRIPTION
                = "Selection of the frequency bandwidth in Survey modes ;
                   Three parameters (Frequency bandwidth, Frequency resolution
                   and Number of frequency steps) are given for all intervals
                    (nominal frequency interval -0- and the 7 complementary
                    ones - nr 1 to nr 7 - ) :
                    Frequency
                                         Frequency
                                                                Number of
                    bandwidth
                                        resolution
                                                               frequency steps
                             O nominal interval from 28 to 3472 kHz
                  28 - 224
                                            7 kHz
                                                                       29
                            kHz
                 238 - 448 kHz
                                            14 kHz
                                                                       16
                  476 - 896 kHz
                                           28 kHz
                                                                       16
                  952 - 1792 kHz
                                           56 kHz
                                                                       16
                 1904 - 3472 kHz
                                          112 kHz
                                                                       15
                             1 interval nr 1 from 28 to 665 kHz
                  28 - 665 kHz
                                            7 kHz
                                                                       92
                             2 interval nr 2 from 259 to 896 kHz
                  259 - 896
                                            7 kHz
                            kHz
                                                                       92
                             3 interval n r3 from 518 to 1792 kHz
                  518 - 1792 kHz
                                           14 kHz
                                                                       92
                              4 interval nr 4 from 924 to 3472 kHz
                  924 - 3472 kHz
                                            28 kHz
                                                                       92
                             5 interval n r5 from 357 to 987 kHz
                  28 - 343
                            kHz
                                            7 kHz
                                                                       46
                  357 - 987
                                            14 kHz
                            kHz
                                                                       46
                             6 interval nr 6 from 28 to 1582 kHz
                  28 - 224
                                            7 kHz
                                                                       29
                            kHz
                  238 - 630 kHz
                                            14 kHz
                                                                       29
                  658 - 1582 kHz
                                           28 kHz
                                                                       34
                             7 interval nr 7 from 268 to 2184 kHz
                 266 - 896 kHz 14 kHz
                                                                       46
                                                                       46"
                  924 - 2184 kHz
                                            28 kHz
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

```
OBJECT
                  = COLUMN
                 = "SWEEP BAND"
  NAME
                 = ASCII INTEGER
   DATA TYPE
   START BYTE
                 = 208
  BYTES
                 = 1
  UNIT
                  = "N/A"
   FORMAT
                  = "11"
  DESCRIPTION
                 = "Selection of the frequency bandwidth in Sweep modes
                    Three parameters (Frequency bandwidth, Frequency resolution
                    and Number of frequency steps) are given for all intervals
                    (nominal frequency interval -0- and the 7 complementary
                     ones - nr 1 to nr 7 - ):
                     Frequency
                                         Frequency
                                                                 Number of
                     bandwidth
                                         resolution
                                                               frequency steps
                              O nominal interval from 28 to 3472 kHz
                                selection made automatically by the
                                onboard software
                   28 - 224
                                            7 kHz
                                                                        29
                            kHz
                  238 - 448 kHz
                                            14 kHz
                                                                        16
                  476 - 896 kHz
                                            28 kHz
                                                                        16
                  952 - 1792 kHz
                                            56 kHz
                                                                        16
                 1904 - 3472 kHz
                                           112 kHz
                                                                        15
                             1 interval nr 1 from 28 to 665 kHz
                   28 - 665 kHz
                                             7 kHz
                                                                        92
                              2 interval nr 2 from 259 to 896 kHz
                                             7 kHz
                  259 - 896
                                                                        92
                             kHz.
                              3 interval nr 3 from 518 to 1792 kHz
                  518 - 1792 kHz
                                            14 kHz
                                                                        92
                              4 interval nr 4 from 924 to 3472 kHz
                  924 - 3472 kHz
                                            28 kHz
                                                                        92
                              5 interval nr 5 from 357 to 987 kHz
                   28 - 343
                                             7 kHz
                                                                        46
                            kHz
                                            14 kHz
                  357 - 987
                                                                        46
                            kHz
                             6 interval nr 6 from 28 to 1582 kHz
                   28 - 224 kHz
                                             7 kHz
                                                                        29
                  238 - 630 kHz
                                            14 kHz
                                                                        29
                  658 - 1582 kHz
                                            28 kHz
                                                                        34
                             7 interval nr 7 from 268 to 2184 kHz
                  266 - 896 kHz 14 kHz
                                                                        46
                                                                       46"
                  924 - 2184 kHz
                                             28 kHz
                  = COLUMN
END OBJECT
OBJECT
                 = COLUMN
                 = "WATCHDOG"
   DATA TYPE
                 = CHARACTER
                 = 211
   START BYTE
  BYTES
                  = 12
                  = "N/A"
                  = "Possibility to inhibit the MIP watchdog
   DESCRIPTION
                     The field takes one of the following the values:
                           watchdog on
                           watchdog off"
END OBJECT
                 = COLUMN
OBJECT
                  = COLUMN
                 = "TM RATE"
  NAME
   DATA TYPE
                 = CHARACTER
   STAR\overline{T} BYTE
                 = 226
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 35

```
BYTES
                  = 12
                 = "N/A"
   UNTT
                 = "Selection of the telemetry rate
   DESCRIPTION
                     The field takes one of the following the values:
                           minimum rate
                           normal rate
                           burst rate"
END OBJECT
                  = COLUMN
OBJECT
                  = COLUMN
                  = "SEQUENCE NR"
  NAME
               = CHARACTER
  DATA TYPE
   START BYTE
                = 241
  BYTES
                 = 27
   UNTT
                  = "N/A"
   DESCRIPTION
                  = "Selection of the sequence number
                     The field takes one of the following the values:
                               nominal sequence
                               complementary sequence nr 1
                               complementary sequence nr 2
                               complementary sequence nr 3
                               complementary sequence nr 4
                               complementary sequence nr 5
                               complementary sequence nr 6
                               complementary sequence nr 7"
END OBJECT
                  = COLUMN
OBJECT
                 = COLUMN
  NAME = "LDL_TYPE"
DATA_TYPE = CHARACTER
START_BYTE = 271
  NAME
  BYTES
                  = 10
                  = "N/A"
   UNIT
                  = "LDL type
   DESCRIPTION
                     The field takes one of the following the values:
                            normal LDL
                            mixed LDL"
END OBJECT
                  = COLUMN
```

4.3.3 Data Product Design of calibrated HK data (level 3)

Level 3 HK contains calibrated MIP HK data, with PDS detached labels.

4.3.3.1 File Characteristics Data Elements

The PDS file characteristic data elements for MIP calibrated HK data (level 3) are:

```
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =
FILE_RECORDS =
PRODUCT_TYPE = RDR
PROCESSING LEVEL ID = 3
```

The FILE_NAME is described in §3.1.4

4.3.3.2 Data Object Pointers Identification Data Elements

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 36

The calibrated HK data are organized as an ASCII table with comma separated values (CSV). The PDS label refers to a single data object which is a TABLE. The data object pointers (^TABLE) reference TAB files.

4.3.3.3 Data Object Definition

The description of the table for calibrated HK level 3:

```
OBJECT = CALIBRATED_HK_TABLE

NAME = "CALIBRATED_HK"

INTERCHANGE_FORMAT = ASCII

ROWS =

COLUMNS = 7

ROW_BYTES = "MIP_CALIBRATED_HK.FMT"

END_OBJECT = CALIBRATED_HK_TABLE
```

The structure of the TABLE object is described in the file MIP_CALIBRATED_HK.FMT as follows:

```
OBJECT
               = COLUMN
              = "UTC TIME"
 NAME
  DATA TYPE = TIME
  STAR\overline{T} BYTE = 1
        = 23
  DESCRIPTION = "This column represents the UTC Time in PDS standard format
                   YYYY-MM-DDThh:mm:ss.sss"
END OBJECT
                 = COLUMN
               = COLUMN
OBJECT
              = "OOBT TIME"
 NAME
 DATA TYPE = CHARACTER
  START BYTE = 26
           = 17
 BYTES
 MISSING CONSTANT
                      = " 9/9999999.99999"
 DESCRIPTION = "This column represents the Orbiter On Board Time;
                   OOBT IS REPRESENTED AS :
                          Reset number (integer starting at 1) / seconds. Reset number 1 starts at 2003-01-01T00:00:00 UTC
                          The time resolution is 1/65536 s "
                = COLUMN
END OBJECT
           = COLUMN
  NAME = "MEAN_POW_PASSIVE_LF"
DATA_TYPE = ASCIT_TMMEGET
OBJECT
 NAME
  START BYTE = 45
              = 2
 BYTES
             = DECIBEL
 UNIT
  FORMAT = "12"
  DESCRIPTION = "Mean power for low frequency in Passive mode
               0 dB = 0.6 microV*Hz**-0.5"
END_OBJECT = COLUMN
OBJECT
              = COLUMN
              = "MEAN POW PASSIVE HF"
 NAME
  DATA TYPE = ASCII INTEGER
  STAR\overline{T} BYTE = 48
             = 2
 UNIT
             = DECIBEL
  FORMAT = "12"
  DESCRIPTION = "Mean power for high frequency in Passive mode
                 0 dB = 0.6 microV*Hz**-0.5"
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 37

```
END OBJECT
             = COLUMN
         = COLUMN
= "RES_POW SURVEY"
OBJECT
 NAME
  DATA TYPE = ASCII REAL
  START BYTE = 51
  BYTES = 5
  UNIT = DECIBEL FORMAT = "F5.2"
  UNIT
  DESCRIPTION = "Resonance power in Survey mode 0 dB = 0.6 microV*Hz**-0.5"
END_OBJECT = COLUMN
         = COLUMN
 NAME = "RES_FREQ_SURVEY"
DATA_TYPE = ASCII_INTEGER
START_BYTE = 57
BYTES
OBJECT
          = 4
= KILOHERTZ
  BYTES
  UNIT
 FORMAT = "14"
  DESCRIPTION = " Resonance frequency in Survey mode "
END OBJECT = COLUMN
        = COLUMN
OBJECT
  NAME = "TEMPERATURE"
DATA_TYPE = ASCII_REAL
 NAME
  START BYTE = 62
  BYTES = 6
  UNIT = KELVIN
FORMAT = "F6.2"
 UNIT
  DESCRIPTION = " Second Sensor (reception electrode) temperature"
END OBJECT = COLUMN
```

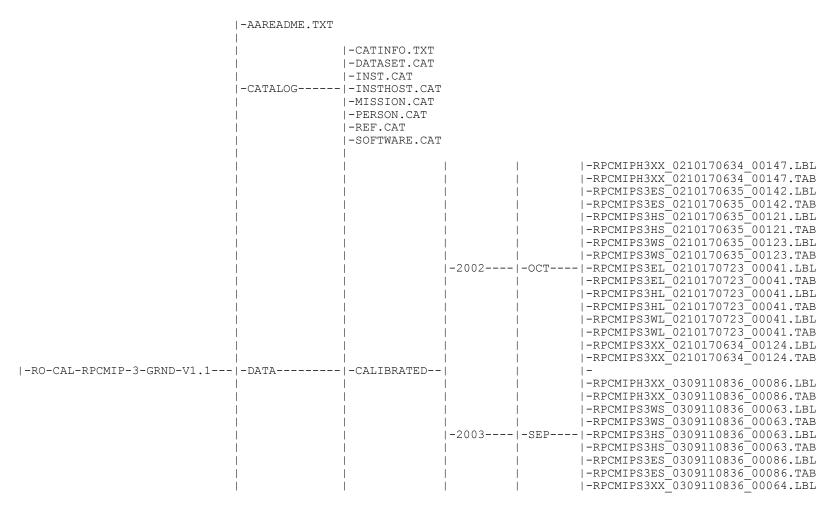
4.3.4 Data Product Design of derived SC data (level 5)

Level 5 SC contains electron density and temperature, with PDS detached labels.

TBD

5 Appendix: Available Software to read PDS files

The level 3 housekeeping and science PDS files can be read with the PDS table verifier tool "w readpds".


Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 38

6 Appendix: Example of Directory Listing of Data Set RO-CAL-RPCMIP-3-GRND-V1.1

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

```
|-RPCMIPS3XX_0309110836_00064.TAB
                |- DOCINFO.TXT
               |- BOARD PROC 34.PDF
               |- BOARD PROC.LBL
               |- RPC-MIP EAICD.PDF
|-DOCUMENT----|- RPC-MIP_EAICD.LBL
               - MIP EXP OVERVIEW.PDF
               |- MIP EXP OVERVIEW.LBL
               |- MIP PIU INTERF 33.PDF
               |- MIP PIU INTERF.LBL
               |- RPC_UM_208.PDF
|- RPC_UM_208.LBL
               |-INDXINFO.TXT
|-INDEX-----|-INDEX.LBL
               |-INDEX.TAB
               |-LABINFO.TXT
               |-MIP SPECTRUM L PO.FMT
               |-MIP SPECTRUM SS PO.FMT
               |-MIP CALIBRATED HK.FMT
|-LABEL----|-MIP_CONFIG_TABLE.FMT
               -MIP SPECTRUM L PH.FMT
               |-MIP SPECTRUM P PO.FMT
               |-MIP SPECTRUM SS PH.FMT
|-VOLDESC.CAT
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

Page: 40

7 Appendix: Example of PDS label for RPCMIP level 3 data product

```
PDS VERSION ID
                                   = PDS3
LABEL REVISION NOTE = "2007-07-16, SONC, version 1.0"
             Electric Field Power Spectrum (Passive) in LDL mode
                                                                                           * /
/* FILE CHARACTERISTIC DATA ELEMENTS */
RECORD TYPE
                        = FIXED LENGTH
RECORD BYTES
                         = 88
FILE RECORDS
                         = 2502576
                        = "RPCMIPS3EL 0809051739 06500.TAB"
FILE NAME
/* DATA OBJECT POINTERS */
^P PO SPECTRUM TABLE
                          = ("RPCMIPS3EL 0809051739 06500.TAB",1 <BYTES>)
DATA_SET_ID = "RO-A-RPCMIP-3-AST1-V1.0"
DATA_SET_NAME = "ROSETTA-ORBITER STEINS RPCMIP 3 AST1 V1.0"
PRODUCT_ID = "RPCMIPS3EL_0809051739_06500"
PRODUCT_CREATION_TIME = 2010-04-09T07:53:05
MISSION_NAME = "INTERNATIONAL ROSETTA MISSION"
MISSION_PHASE_NAME = "STEINS FLY-BY"
MISSION_ID = ROSETTA
INSTRUMENT_HOST_NAME = "ROSETTA-ORBITER"
INSTRUMENT_HOST_ID = RO
OBSERVATION TYPE
                       = "STEINS FLYBY"
PRODUCT TYPE
                        = RDR
                       = \text{KDK}
= 2008-09-05\text{T}17:39:19.571
START TIME
                      = 2008-09-10T06:00:07.644
STOP TIME
SPACECRAFT_CLOCK_START_COUNT = "2/179257122.01653"
SPACECRAFT_CLOCK_STOP_COUNT = "2/179647170.01653"
                         = "SONC"
PRODUCER ID
PRODUCER FULL NAME = "SCIENCE OPERATIONS AND NAVIGATION CENTER"
PRODUCER INSTITUTION NAME = "CNES"
INSTRUMENT_ID = RPCMIP
INSTRUMENT_NAME="ROSETTA PLASMA CONSORTIUM - MUTUAL IMPEDANCE PROBE"
INSTRUMENT_TYPE = "MUTUAL IMPEDANCE PROBE"
INSTRUMENT_MODE_ID = "N/A"
INSTRUMENT_MODE_DESC = "N/A"
               = "2867 STEINS"
= "ASTEROID"
TARGET NAME
TARGET TYPE
PROCESSING LEVEL_ID = 3
DATA QUALITY ID = -1
DATA_QUALITY_DESC = "-1 : NOT QUALIFIED"
/* GEOMETRY PARAMETERS */
/* SPACECRAFT LOCATION: Position <km> */
SC SUN POSITION VECTOR = ( 107139433.4, 270109493.5, 132746568.8)
/* TARGET PARAMETERS: Position <km>, Velocity <km/s> */
SC_TARGET_POSITION_VECTOR = ( 251647317.2, 230548302.6, 115595003.9)
SC_TARGET_VELOCITY_VECTOR = ( -5.4, 33.8, 17.0)
/* SPACECRAFT POSITION WITH RESPECT TO CENTRAL BODY */
SPACECRAFT ALTITUDE = 360328325.4 <km>
SUB SPACECRAFT LATITUDE = -18.63 <deg>
```

Document No. : RPC-MIP-EAICD

Issue/Rev. No. : 1.3

Date : 04 June 2015

```
SUB SPACECRAFT LONGITUDE = 337.67 <deg>
NOT\overline{E} = "The values of the keywords SC SUN POSITION VECTOR,"
       SC TARGET POSITION VECTOR and SC TARGET VELOCITY VECTOR
       are related to the EMEJ2000 reference frame.
       The values of SUB_SPACECRAFT_LATITUDE and SUB_SPACECRAFT_LONGITUDE
       are northern latitude and eastern longitude in the standard
       planetocentric IAU_<TARGET_NAME> frame.
       All values are computed for the time = START TIME.
       Distances are given in <km> velocities in <km/s>, Angles in <deg>"
/* DATA OBJECT DEFINITION */
                      = P_PO_SPECTRUM_TABLE
= "P_PO_SPECTRUM"
OBJECT
  NAME
  INTERCHANGE FORMAT = ASCII
  ROWS
                     = 2502576
                      = 7
  COLUMNS
                = 88
= "MIP_SPECTRUM_P_PO.FMT"
= P_PO_SPECTRUM_TABLE
  ROW BYTES
 ^STRUCTURE
END OBJECT
END
```