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Ingo Richter

Institut für Geophysik und Extraterrestrische Physik
Technische Universität Braunschweig

Mendelssohnstraße 3, 38106 Braunschweig
Germany



R O S E T T A

IGEP
Institut für Geophysik u. Extraterr. Physik

Technische Universität Braunschweig

Document: RO–IGEP–TR–0072
Issue: 1
Revision: 0
Date: July 5, 2018
Page: I

Contents

1 Motivation 1

2 Multi-Fluid Plasma Waves and Cross Polarisation 2
2.1 MHD Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Multi-fluid Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Conclusion 6



R O S E T T A

IGEP
Institut für Geophysik u. Extraterr. Physik

Technische Universität Braunschweig

Document: RO–IGEP–TR–0072
Issue: 1
Revision: 0
Date: July 5, 2018
Page: 1

1 Motivation

The Rosetta Magnetometer RPCMAG is a very sensitive fluxgate magnetometer. As any
relative measuring magnetometer the RPCMAG measurements are subject to significant
offset errors. In case of a spinning spacecraft offset corrections of the magnetic field compo-
nents in the spin-plane of the spacecraft can easily be corrected for. Further tools exist for
proper correction of the spin axis component. However, Rosetta is a non-spinning space-
craft, a three-axis stabilized spacecraft. This implies major challenges with respect to the
correction of magnetometer offsets. The temperature dependance of the offsets introduces
another complicating aspects of the calibration task, necessary to provide magnetic field
measurements in a scientific archive, useful for further science exploitation.

Several methods have been developed in the past to handle the offset determination prob-
lem. For example, structural properties of magnetic field fluctuations can be used to
estimate the offsets. The most well-known method is the Hedgecock method (Hedge-
cock, P.C., A correlation technique for magnetometer zero level determination, Space Sci-
ence Instrumentation,1,8390,1975), using the fact that Alfven waves oscillations are purely
transverse oscillations. More recently, the Plaschke method (Plaschke, F., Narita, Y., On
determining fluxgate magnetometer spin axis offsets from mirror mode observations, Ann.
Geophys., 34, 759766, doi:10.5194/angeo-34-759-2016, 2016; Frühauff, D., Plaschke, F.,
Glassmeier, K.H., Spin axis offset calibration on THEMIS using mirror modes, Ann. Geo-
phys., 35, 117-121, doi:10.5194/angeo-35-117-2017, 2017) was proposed using mirror mode
structures, magnetic variations of typical changes in the magnetic field magnitude. Both
methods are regarded as suitable tools to determine offsets.

Another possibility to determine any offset problem may be a detailed analysis of phase
relations between the various electro-magnetic and mechanical parameters of the coupled
electromagnetic-hydrodynamic fields of the plasma. These are, for example, magnetic and
electric field oscillations or plasma density variations. In a generalized terminology these
relations between different parameters are called cross-polarisations. Of particular interest
is a study of the phase relation between magnetic field magnitude and electron density
oscillations. If this phase relation depends on the magnitude of the background magnetic
field, any offset error will impact the observed phase with respect to the theoretically
expected phase. Thus, the phase relation might be disturbed if significant offset errors
exist. This motivates the current report. It aims at a more detailed analysis of the cross
polarisation between field magnitude and electron density.



R O S E T T A

IGEP
Institut für Geophysik u. Extraterr. Physik

Technische Universität Braunschweig

Document: RO–IGEP–TR–0072
Issue: 1
Revision: 0
Date: July 5, 2018
Page: 2

2 Multi-Fluid Plasma Waves and Cross Polarisation

2.1 MHD Plasma

To illustrate our approach we will start with the MHD equations for which the phase-
relation between the density perturbation and the pertubation in the magnetic field is well
known and understood. The equations governing a plasma in the MHD approximation
consist of:

ρ
∂u

∂t
= −∇ · pe + j ×B

∂ρ

∂t
= −∇ · (ρu)

∇×B = µ0j

∇× E = −∂B

∂t
.

Hereby ρ denotes the mass density, u the bulk velocity of the fluid and B0 the background
magnetic field. As a closure for the above system of equations we use the adiabatic energy
equation

p · ργ = const. (1)

With this and the ideal gas law

p = nkBT =
ρ

m
kBT, (2)

where n denotes the number density and m the mass, the gradient of the pressure simplifies
to

∇ · p = γ
p

ρ
∇ · ρ =

γkBT

m
∇ · ρ = v2s∇ · ρ. (3)

Hereby vs =
√

γkBT
m is the sonic speed of the medium.

For small perturbations |δB| ≪ |B0| we can use the linearised form of equations 1 to 1:

ρ0
∂u1
∂t

= −v2s∇ · ρ1 +
1

µ0
(∇×B1)×B0

∂ρ1
∂t

= −ρ0∇ · u1
∇×B1 = µ0j1

∇× E1 = −∂B1

∂t
,

where we assumed a uniform background magnetic field B0 = (0, 0, B0) and a plasma that
is at rest u0 = 0. For further simplification we assume that the perturbations of a quantity
Φ can be explained by plane harmonic waves Φ(x, t) = Φ exp (−i (xk − ωt)) and that wave
propagation is restricted to the xz-plane k = (kx, 0, kz).
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After some algebra we obtain from equation 1 and the above assumptions

ux =
v2skx
ω

· ρ1
ρ0

− B0

µ0ρ0ω
(kzBx,1 − kxBz,1)

uy = −B0kz
ωµ0

By,1

uz =
v2skz
ω

ρ1
ρ0

.

Inserting this into the continuity equation 1 and writing k = (kx, 0, kz) = k ·
(sin(Θ), 0, cos(Θ)), where Θ denotes the angle between the magnetic field and the propa-
gation direction, yields:

ρ1
ρ0

(
ω2

k2
− v2s

)
= v2A

(
Bz,1

B0
sin(Θ)2 − Bx,1

B0
sin(Θ) cos(Θ)

)
. (4)

In order to analyse this equation information about the wave solution is needed. This can
be obtained by the well known dispersion relation in a warm MHD plasma

ω2

k2
= v2ph =

1

2

(
v2A + v2s ±

√(
v2A + v2s

)2 − 4v2Av
2
s cos(Θ)2

)
. (5)

For the special case of wave propagation perpendicular to B0 (Θ = 90◦) we obtain from
Equation 4 and Equation 5

ρ1
ρ0

=
Bz,1

B0
(6)

which is expected for a fast mode.

In the case of wave propagation parallel to B0 (Θ = 0◦) the magnetic field perturbations
decouple from the density perturbations and we obtain

ρ1
ρ0

(
ω2

k2
− v2s

)
= 0, (7)

which describes a sonic wave with vph = vs. For arbitrary propagation directions the sign
of Equation 4 depends on the phase speed of the corresponding mode (Equation 5). The
phase between the density and magnetic field perturbations always amounts to either 180◦

for the slow mode or 0◦ for the fast mode. An offset of the background magnetic field
vector would not influence the phase for the MHD case. However, as the MHD model is
based on severe restrictions, this has to be evaluated for other conditions using a more
sophisticated model.
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2.2 Multi-fluid Plasma

Contrary to the MHD model the multi-fluid approach allows for more than one particle
species. This introduces effects based on the different masses of the particles, which in turn
also influence the wave modes propagating in the medium. For our analysis we assume an
electron-ion plasma where the ions are at rest ui ≈ 0. The set of Equations consists of

ne,0me
∂ue,1
∂t

= −ene

(
E1 + ue,1 ×B0

)
−∇pe

∂ne,1

∂t
= −∇ ·

(
ne,0ue,1

)
∇× E1 = −∂B1

∂t

∇×B1 = µ0j1 +
1

c2
∂E1

∂t
.

Analogously to the MHD approach we obtain from the momentum equation

ux,1 =
−ie

ωme
(Ex,1 + uyB0)−

v2sekx
ω

· ne,1

ne,0

uy,1 =
−ie

ωme
(Ey,1 − uxB0)

uz,1 =
−ie

ωme
Ez,1 −

v2sekz
ω

· ne,1

ne,0
.

Unlike in the MHD case the equations for ux,1 and uy,1 are now coupled. Inserting the
expression for uy,1 inti that one for ux,1 yields:

ux,1 = − iΩe

ω − Ω2
e
ω

· Ex,1

B0
− Ω2

e

ω2 − Ω2
e

· Ey,1

B0
+

v2sekx

ω − Ω2

ω

ne,1

ne,0
, (8)

where Ωe = eB0/me is the electron gyro-frequency. With this we can relate the perturba-
tions in electric field and the density:

ne,1

ne,0

(
1−−vse

2k2z
ω2
e

− vse
2k2x

ω2 − Ω2
e

)
= − iΩekx

ω2 − Ω2
e

Ex,1

B0
− Ω2

ekx
ω(ω2 − Ωe)

Ey,1

B0
− ikzΩe

ω2

Ez,1

B0
. (9)
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In order to relate the electric field to the magnetic field through Faraday’s Law (Equation
1) a relation between Ex,1 and Ey,1 is needed. The polarisation of the electric field vector
for arbitrary propagation directions is given by

Ex,1

Ey,1
=

i(S − η2)

D
, (10)

with η = ck/ω, S = 1 − ω2
pe/(ω

2 − Ω2
e), D = ω2

peΩe/(ω(ω
2 − Ωe)) and the electron

plasma frequency ω2
pe = ne,0e

2/ϵ0me. As previously noted we can assume Ez,1 ≈ 0 for the
cometary interaction region. Inserting the polarisation and neglecting the terms with Ez,1

yields

ne,1

ne,0

(
1−−v2sek

2 cos(Θ)

ω2
− v2sek

2 sin(Θ)

ω2 − Ω2
e

)
=

(
Ωeω

ω2 − Ω2
e

S − η2

D
− Ω2

e

ω2 − Ω2
e

)
Bz,1

B0
. (11)

The sign of the expression depends, similar to the MHD case, on the dispersion relation of
the corresponding waves modes. Substituting ω and k according to the dispersion relation,
which can be found in e.g. Bittencourt, Fundamentals of Plasma Physic (2004), yields
a phase of either 180◦ or 0◦, describing the slow mode and the fast mode, respectively.
Moreover, variations in the background magnetic field due to offsets do not affect the
phase between magnetic field and density perturbations.

In the special case of perpendicular propagation we obtain

ne,1

ne,0

(
1− v2sek

2
x

ω2 − Ω2
e

)
=

Bz,1

B0

(
Ω2
e(Ω

2
e + 2ω2

pe − ω2)

(ω2 − Ω2
e)(ω

2 − Ω2
e − ω2

pe)

)
. (12)

In the right hand side expression we can identify the known reflection point ω2 = Ωe+2ω2
pe

and resonance points ω2 = Ω2
e, Ω

2 = Ω2
e + ω2

pe. For high frequencies ω → ∞ the term on
the right hand side vanishes implying that the magnetic field oscillations decouple from
the density oscillations. This is reasonable in the limit of an electromagnetic wave.

For a cold plasma vse ≈ 0 in the low frequency approximation ω ≪ Ωe this reduces to

ne,1

ne,0
≈ Bz,1

B0
(13)

which is consistent with Equation 6.
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3 Conclusion

Our theoretical study of wave propagation in a warm plasma has shown that the real
phase between magnetic field and density perturbations is not affected by the background
magnetic field and therefore not sensitive to any offsets. In conclusion, determination of
the phase of cross polarisation between density and magnetic field magnitude is not a
suitable tool to determine offset problems.


