OSIRIS

Optical, Spectroscopic, and Infrared Remote Imaging System

OSIRIS camera linearity and saturation level

RO-RIS-MPAE-TN-078/1a Issue: 1 Revision: a 22/02/2017

> Prepared by: Gabor Kovacs

 Reference:
 RO-RIS-MPAE-TN-078

 Issue:
 1
 Rev.: a

 Date:
 22/02/2017

 Page:
 2

Approval Sheet

prepared by: G. Kovacs (signature/date)

approved by: H. Sierks (signature/date)

Document Change Record

Iss./Rev.	Date	Pages affected	Description
D / -	10/05/2015	all	first draft
1 / -	29/06/2015	all	first release
1/a	22/2/2017	Sec. 3	Section added

Table of contents

1	Gen	eral aspects	. 5
	1.1	Scope	. 5
	1.2	Applicable Documents	. 5
	1.3	Reference Documents	. 5
2	Can	era response linearity	. 6
	2.1	Evaluation method	. 6
	2.2	Results	. 6
3	Cali	bration files used by OsiCalliope	.9

List of Figures

Figure 1. NAC linearity. The chart shows the Vega DN numbers as a function of the exposure	;
time in seconds for the NAC	8
Figure 2. WAC linearity. The chart shows the Vega DN values as a function of the exposure t in seconds for the WAC.	ime 8

List of Tables

Table 1 Image statistics	′	7
--------------------------	---	---

1 General aspects

1.1 Scope

This document describes the methods and results of the OSIRIS camera linearity analysis. The examination was carried out on the OSIRIS flight model Narrow Angle and Wide Angle Cameras to provide the following data for the calibration pipeline:

- saturation level of the CCD in DN units
- non-linearity level of the CCD in DN units
- general linearity performance of the camera system
- default shutter correction value for 0 ms exposure

The analysis is based on Vega and internal calibration lamp images.

1.2 Applicable Documents

no.	document name	document number, Iss./Rev.

1.3 Reference Documents

no.	document name	document number, Iss./Rev.
RD1	OSIRIS user manual	RO-RIS-MPAE-UM-004, D/s
RD2	OSIRIS Calibration Report	RO-RIS-MPAE-RP-147, 1/b
RD3	OSIRIS calibration pipeline OsiCalliope	RO-RIS-MPAE-MA-007, 1/-

2 Camera response linearity

The linearity analysis is based on the linearity observation sequences of the NAC and WAC systems, during the CG comet approach and escort phases of the Rosetta spacecraft. These sequences provided images of standard calibration stars (such as Vega) with several different commanded exposure times, from low exposure to full saturation.

The OSIRIS cameras utilize high quality CCDs, with full well capacity around 120000 electrons. The readout electronics are adjusted to saturate the CCD, at A/D converter readouts well below the 65536 limit. This results in different saturation DN values for the NAC and the WAC system.

2.1 Evaluation method

The Vega images were processed by the following method:

- The image statistics were calculated for the full window area of each image: average, std.dev., median, 1_sigma_clip_avg (average after sigma clipping), sum_DN (full DN content), see Table 1.
- The background was estimated by the sigma clip average
- The maximum pixel DN value determined
- The sum_DN of an 11x11 pixel area around the star image was calculated after removing the background (Vega_DN).
- Linear fit was applied over the exposure times, and the Vega_DN. The deviation from the linear fit was calculated; see Figure 1. NAC linearity and Figure 2. WAC linearity.

2.2 Results

Based on the Vega images, the CCD saturation levels are:

SAT_LEVEL_NAC = 54000 DN SAT_LEVEL_WAC = 48000 DN

Both cameras demonstrated excellent linearity (< 2%) over the full range

NON LIN LEVEL NAC = 54000 DN

NON LIN LEVEL WAC = 48000 DN

The values are in effect from 2014-01-01. The earlier IDL pipeline used the hard coded saturation value of 45000 DN and nonlinearity value of 40000 DN for both cameras.

Table 1 Image statistics

File	N pix	Avg	S_Dev	Median	Avg_1S	vid N	Sum	Max_pix	T_exp	NAC Vega_Dn	inear_DN c	lelta%
NAC_2014-12-22T13.44.00.1332_ID10_1397549000_F82	65536	2.38E+02	2.75E+01	237	2.37E+02	121	4.68470E+04	3714	0.100	18142.53	18350.9135	-1.15
NAC_2014-12-22713.44.09.5732_ID10_1397549100_F82	65536	2.38E+02	4.02E+01	237	2.38E+02	121	5.70270E+04	5397	0.150	28285.99	27915.8638	1.31
NAC_2014-12-22T13.44.18.5832_ID10_1397549200_F82	65536	2.38E+02	5.27E+01	237	2.38E+02	121	6.62440E+04	8166	0.200	37497.67	37480.814	0.04
NAC_2014-12-22T13.44.29.5432_ID10_1397549300_F82	65536	2.38E+02	8.12E+01	237	2.37E+02	121	8.54550E+04	13708	0.300	56717.62	56610.7145	0.19
NAC_2014-12-22T13.44.38.5932_ID10_1397549400_F82	65536	2.39E+02	1.10E+02	237	2.38E+02	121	1.04013E+05	22352	0.400	75259.41	75740.615	-0.64
NAC_2014-12-22713.44.49.5732_ID10_1397549500_F82	65536	2.39E+02	1.63E+02	237	2.38E+02	121	1.43162E+05	31068	0.600	114406.11	114000.416	0.35
NAC_2014-12-22713.44.58.6042_ID10_1397549600_F82	65536	2.40E+02	2.13E+02	237	2.38E+02	121	1.80577E+05	35928	0.800	151815.54	152260.217	-0.29
NAC_2014-12-22713.45.09.5892_ID10_1397549700_F82	65536	2.41E+02	2.66E+02	237	2.38E+02	121	2.19521E+05	46348	1.000	190754.70	190520.018	0.12
NAC_2014-12-22713.45.18.6092_ID10_1397549800_F82	65536	2.42E+02	3.67E+02	238	2.38E+02	121	3.02985E+05	56664	1.500	274199.10	286169.521	-4.37
NAC_2014-12-22713.45.29.5692_ID10_1397549900_F82	65536	2.43E+02	4.22E+02	238	2.38E+02	121	3.69626E+05	56532	2.000	340839.37	381819.023	-12.02
NAC_2014-12-22T13.45.38.5792_ID10_1397549000_F82	65536	2.46E+02	4.96E+02	238	2.39E+02	121	4.62951E+05	56680	3.000	434023.41	573118.028	-32.05
NAC_2014-12-22T13.45.49.5602_ID10_1397549100_F82	65536	2.47E+02	6.31E+02	237	2.38E+02	121	6.70050E+05	56724	6.000	641284.31	1147015.04	-78.86
NAC_2014-12-22T13.45.58.7602_ID10_1397549200_F82	65536	2.53E+02	7.54E+02	238	2.40E+02	121	9.14814E+05	56988	12.000	885831.23	2294809.07	-159.06
File	N pix	Avg	S_Dev	Median	Avg_1S	V piy	Sum	Max_pix	T_exp	WAC Vega_Dn	0	lelta%
WAC_2014-12-22T13.46.18.4332_ID10_1397549400_F12	16384	2.44E+02	2.65E+02	238	2.39E+02	121	1.17677E+05	20404	0:080	88791.88	88949.0934	-0.17706
WAC_2014-12-22T13.46.28.4462_ID10_1397549500_F12	16384	2.46E+02	3.31E+02	240	2.40E+02	121	1.41365E+05	21996	0.100	112338.07	112181.714	0.139181
WAC_2014-12-22T13.46.37.5482_ID10_1397549600_F12	16384	2.51E+02	5.00E+02	240	2.41E+02	121	1.99451E+05	33076	0.150	170327.87	170263.266	0.037931
WAC_2014-12-22T13.46.48.4852_ID10_1397549700_F12	16384	2.55E+02	6.74E+02	241	2.41E+02	121	2.57501E+05	48048	0.200	228281.07	228344.819	-0.02792
WAC_2014-12-22T13.46.57.6882_ID10_1397549800_F12	16384	2.60E+02	7.75E+02	242	2.43E+02	121	3.15100E+05	49968	0.300	285703.78	344507.923	-20.5822
WAC_2014-12-22T13.47.08.4602_ID10_1397549900_F12	16384	2.70E+02	8.94E+02	246	2.47E+02	121	4.29722E+05	49968	0.600	399860.29	692997.236	-73.3098
WAC_2014-12-22T13.47.17.5082_ID10_1397549000_F12	16384	2.86E+02	1.05E+03	252	2.54E+02	121	5.59771E+05	49984	1.000	528978.68	1157649.65	-118.846
WAC_2014-12-22T13.47.28.4712_ID10_1397549100_F12	16384	3.16E+02	1.36E+03	267	2.71E+02	121	7.98686E+05	5016	2.000	765862.21	2319280.7	-202.833

Figure 1. NAC linearity. The chart shows the Vega DN numbers as a function of the exposure time in seconds for the NAC.

Figure 2. WAC linearity. The chart shows the Vega DN values as a function of the exposure time in seconds for the WAC.

 Reference:
 RO-RIS-MPAE-TN-078

 Issue:
 1
 Rev.: a

 Date:
 22/02/2017

 Page:
 9

3 Calibration files used by OsiCalliope

The saturation and non-linearity levels are stored in:

• OSICALLIOPE_V01.TXT

Previous versions:

• OsiCalliope.LBL (obsolete, same values as OSICALLIOPE_V01.TXT)