OSIRIS

Optical, Spectroscopic, and Infrared Remote Imaging System

Shutter parameters for exposure time calculation

RO-RIS-MPAE-TN-073

Issue: 1

Revision: d

29/10/2018

Prepared by:

J. Deller

Reference: RO-RIS-MPAE-TN-073

Rev.: d

Issue: 1

Date: 29/10/2018

Page: 2

Approval Sheet

[/11 · 18

John Della 1. 11. 2018

Prepared by: J. Deller (signature/date)

Approved by: H. Sierks (signature/date)

Date: 29/10/2018

Page: 3

Document Change Record

Iss./Re v.	Date	Author	Pages affected	Description
D / -	10/07/2014	Kovacs	all	first draft
D / a	11/05/2015	Kovacs	7	added default shutter correction time and counter rollover
1 / -	29/06/2015	Kovacs	all	first release
1 / a	22/2/2017	Kovacs	Sec. 3 and 4	added
1 / b	18/10/2017	Deller	all	Added a description of ballistic mode, clarified calibration file calculations and changed introduction. Added Sec. 5
1 / c	19/02/2018	Deller	all	Updated description and visualization of shutter profiles used for exposure time correction in WAC ballistic operations. Added time when operations using BALLISTIC, BALLISTIC_STACKED and BALLISTIC_DUAL started. Added keyword value UNCORRECTED_MISSING_DEFAULT_PROFILE Updated version of RD5. Sec 5: Removed report on wrongly calibrated images that have been corrected since. Changed reference document RD4 for clarification
1 / d	29/10/2018	Deller	Sec 3.2 Sec 3.3	Shutter Errors in any ballistic mode can be discarded Added details about the execution time for BALLISTIC_STACKED images, and the correction applied to the START_TIME keyword
			Sec. 4	Increased to WAC_FM_EXP_20160405_V03.TXT

Date: 29/10/2018

Page: 4

Table of contents

1	Gen	eral aspects	6
	1.1	Scope	6
	1.2	Reference Documents	6
	1.3	Introduction	6
2	Shu	tter operation mechanism	7
	2.1	Shutter parameters.	8
	2.2	Exposure time calculation method	9
	2.3	Shutter activation in test mode	9
	2.4	Acquisition and analysis of the shutter pulses	10
	2.4.	1 Shutter pulses not usable for exposure time correction	10
	2.4.	2 Counter rollover	10
	2.4.	3 The "ZEROPULSE_FLAG"	10
3	Shu	tter operation modes	11
	3.1	NORMAL operation mode	12
	3.2	The WAC shutter in BALLISTIC operation mode	12
	3.2.	1 Tweaking of shutter parameters for the WAC ballistic operation mode	13
	3.3	The WAC shutter in BALLISTIC_STACKED operation mode	15
	3.4	The WAC shutter in BALLISTIC_DUAL operation mode	16
4	Cali	bration files used by OsiCalliope	17
5	Ver	ification of image calibration for on-CCD stacked images using an exemplary sequence	ce18
	5.1	Description of exemplary sequence STP104_DUST_MON_102	18
	5.2	Ratio of stacked and non-stacked images.	18
		List of Figures	
Fi	gure 1	Shutter mechanism	8
Fi	gure 2	Cumulative number of shutter activations and shutter errors in the course of the mission	on11
Fi		Cumulative number of images per SHUTTER_OPERATION_MODE during corse	
Fi	aver	Value of the WAC CCD travel distance. Indicated is also the validity periods of rage shutter profile files used for exposure time correction in the ballistic operation.	ion

Date: 29/10/2018

Page: 5

Date: 29/10/2018

Page: 6

1 General aspects

1.1 Scope

This document describes the OSIRIS shutter operation modes used during the course of the mission as well as the method and parameters used for calculating the effective exposure time as described in RD5. In Section 5 the exposure time correction for on-CCD stacked images acquired in ballistic mode is validated using an exemplary sequence.

1.2 Reference Documents

no.	document name	document number, Iss./Rev.
RD1	OSIRIS user manual	RO-RIS-MPAE-UM-004, D/s
RD2	Transfer function between the encoder measurement and the blades position of the FM WAC SHM	RO-RIS-UPD-TN-W333-219
RD3	Transfer function between the encoder measurement and the blades position of the FM NAC SHM	RO-RIS-UPD-TN-N333-213
RD4	Shutter Interface Drawing	RO-RIS-UPD-DI-NW331 250/2c
RD5	OSIRIS calibration pipeline OsiCalliope	RO-RIS-MPAE-MA-007, 1/d
RD6	Operation of the OSIRIS Shutter	RO-RIS-MPAE-TN-082, D/-
RD7	OSIRIS EAICD	RO-RIS-MPAE-ID-015

1.3 Introduction

The OSIRIS WAC and NAC utilize a mechanical shutter for exposure control. The shutters have two parallel moving blades which move in front of the CCD, allowing illumination (exposure) times from a few milliseconds up to several minutes on the detector, limited in principle only by the amounting noise generated by cosmic rays impacting on the CCD. The shutter blades are moved by precisely controlled motors, and their actual position is detected by optical encoders coupled to the motor shafts [RD1]. The shutter drive electronics provide a flexible method to generate arbitrary speed-position profiles for the shutter motion.

The OSIRIS shutter has been operated in various modes that need different exposure time correction to calibrate the resulting images. The operation mode is stored in the keyword SHUTTER_OPERATION_MODE of the image header, and the following modes have been used during the Rosetta mission:

- NORMAL
- BALLISTIC
- BALLISTIC STACKED
- BALLISTIC DUAL

To calibrate the images, the exact exposure time of each pixel is essential. The exposure time correction is described in RD5, and the corresponding keyword in the HISTORY section of the header, EXPOSURE CORRECTION TYPE, can have one of the following values:

• NORMAL PULSES

Date: 29/10/2018

Page: 7

- NORMAL NOPULSES
- BALLISTIC PULSES
- BALLISTIC NOPULSES
- BALLISTIC STACKED NOPULSES.

In case of errors, when the images cannot be exposure time corrected, the keyword EXPOSURE_CORRECTION_TYPE will begin with UNCORRECTED, followed by the reason for failure:

- UNCORRECTED UNKNOWN
- UNCORRECTED SHUTTER ERROR A
- UNCORRECTED_SHUTTER_ERROR_C
- UNCORRECTED SHUTTER ERROR D
- UNCORRECTED ERROR PULSES
- UNCORRECTED_MISSING_DEFAULT_PROFILE.

Each shutter blade is driven by a motor in one of its bearings. The other bearing is attached to a position encoding device that stores the value of a timer each time the encoder disk is moved to a new position. These shutter profiles allow a reconstruction of the shutter blade's leading edge position, and are stored together with most of the images.

The exact time each line of the CCD has been exposed to the light and the effective exposure time can be determined exactly in case the shutter profiles have been acquired and stored together with the image. In this document, the parameters needed for this calculation are described in Section 2.1 and 2.2. If no shutter profiles have been acquired or the shutter pulses cannot be used, either a constant correction value is used as given in Table 1 for exposure time correction, or reference profiles that are described in Section 4.

2 Operation of the shutter mechanism

While the basic operation of both the WAC and the NAC shutter is described in RD6, a short wrap-up of the shutter operation is given here.

The schematic in Figure 1 shows the principal parts of the shutter mechanics. When both blades are in the home position, the CCD is covered by the first blade. When the shutter is activated, the first blade is moved to the side by the motor. Acceleration and therefore the resulting velocity of the blade are controlled by a preloaded shutter driver profile that describes the acceleration curve using 512 byte resolution.

Nominally, the first blade is locked by a latch in the open position. After exposing the CCD the desired time, the second blade is fired and moved, covering the CCD again. When the second blade arrives at the end position, it opens the latch releasing the first blade. Both blades then travel together into the home position without additionally exposing the CCD, driven by pivot elements in the bearings of the four-bar mechanism. As the back travel is not further controlled, it is called a 'ballistic' travel into home position.

Date: 29/10/2018

Page: 8

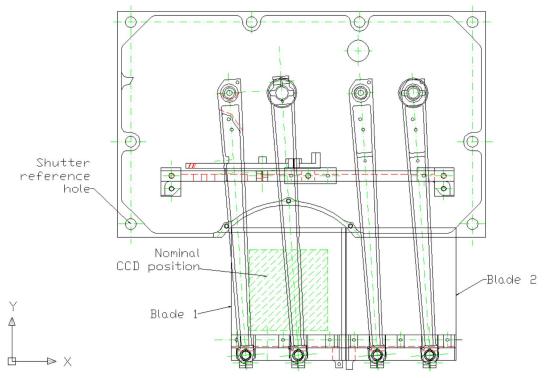


Figure 1 Shutter mechanism

2.1 Shutter parameters

The shutter parameters are used to calculate the blades' cutting edge positions, as a function of the encoder values. They are derived from the mechanical dimensions, measured during system integration [RD2, RD3] and operational tests.

The shutter transfer function is:

 $x = L \cdot \left[\sin(\Theta_0) + \sin(n \cdot 0.05^\circ + \Theta_z - \Theta_0) \right] - x_0$

Where: x: cutting edge position of the blade, relative to the CCD edge

L: shutter arm length

 θ_0 : rotation angle of the shutter arm in nominal (home) position

n: number of encoder pulses

 θ_Z : rotation angle of the shutter arm from nominal (home) positions, to the

zero encoder pulse position

 x_0 : distance between the blade cutting edge and the CCD edge in the nominal

(home) position

Date: 29/10/2018

Page: 9

Table 1 Shutter parameters

Parameter	NAC FM		WAC	Source		
	Blade 1	Blade 2	Blade 1	Blade 2		
L [mm]	<i>L</i> [mm] 100.00 100.00		100.00 100.00		RD2, RD3	
θ ₀ [°]	3.56	3.77	4.95	4.16	RD2, RD3	
$\theta_{\mathrm{Z}}[^{\circ}]$	1.025	1.95	1.9	1.2	Calculations*	
x_0	8.796	6.956	9.136	7.146	RD2, RD3, RD4	
Counter	0	1	1	0	This work*	
rollover						
Default	-0.0	027	-0.0	025	This work*	
exposure time						
correction [s]						

*Calculations are based on matching full shutter data of images acquired with

ZEROPULSE FLAG = FALSE and with ZEROPULSE FLAG = TRUE:

- WAC 2008-03-19T21.48.40.651Z ID10 0000000150 F12.IMG
- NAC 2008-02-13T23.05.57.436Z ID10 0000000200 F21.IMG

2.2 Exposure time calculation method

The motion of the shutter blades is controlled by the driver electronics, based on a preprogrammed speed profile. Since the velocity is not constant across the CCD surfaces, and the acceleration profiles of the two blades are different, the actual illumination time can only be calculated from the shutter position function. In order to obtain the position-time function, the shutter system uses encoders on the motor shafts. For the precise time base, the electronics utilize a 2.1 MHz clock signal and two separate 14 bit counters, one for each blade. These counters are sampled each time the encoder sends a pulse.

The first counter resets at the exposure start signal when the first blade motor is activated. The second counter resets at the end of the commanded exposure time, when the second blade is activated. In this way the counters deliver a relative time value for each encoder position. Based on the shutter transfer functions (see Section 2.1), the actual positions of the shutter cutting edges are calculated. The time difference between the two shutter functions at the same location over the CCD is used when calculating the value for the line wise exposure time correction factor Δt as described in RD5.

2.3 Shutter activation in test mode

The configuration of the shutter electronics during activation is controlled by setting the shutter control byte mask as described in RD6. This allows the setting of a 'test' mode. This mode has two effects: (1) The limitation of the shutter profile to 440 data points is revoked, and (2) all pulses received are stored. Furthermore, the hall senor detecting the locking of blade 1 is disabled, preventing the triggering of TYPE_A errors.

Both effects are needed when operating the WAC shutter in the special ballistic operations modes (see Section 3.2), therefore the majority of images taken in a SHUTTER_OPERATION_MODE that is not NORMAL have been acquired in test mode, while for the majority of images in NORMAL mode the test mode was disabled. If the test mode is enabled, the TESTMODE_FLAG is set to TRUE, otherwise it is set to FALSE. The flag is stored in the SR_SHUTTER_CONFIG group in the image header.

Date: 29/10/2018

Page: 10

2.4 Acquisition and analysis of the shutter pulses

The shutter pulses are generated and stored only when the position encoders are enabled and the image acquisition configuration includes the storage of the profiles.

In some cases, even if the shutter pulses are stored together with the images, analysis of the shutter pulse data shows that either the pulses cannot be used for calibration of the images, or that the shutter did not work as expected and the image cannot be calibrated altogether.

2.4.1 Shutter pulses not usable for exposure time correction

During the analysis of the shutter pulse data, the position and velocity of the shutter blade edge is calculated. If the shutter pulse data contains less than 400 points, the pulses are not further analyzed, and the image is calibrated using a _NOPULSES type for EXPOSURE CORRECTION TYPE.

For successful shutter operation, the blade speed must be higher than 1 m/s when reaching the CCD area (0.0 mm position). If this is not achieved, the exposure time correction mode is set to EXPOSURE_CORRECTION_TYPE = UNCORRECTED_ERROR_PULSES and the image will not be exposure time corrected.

The turning point is determined by the first position where the blade speed falls below 0.1 m/s. For ballistic modes the turning point must be before the locking position (30.0 mm position), otherwise the exposure time correction mode is set to EXPOSURE_CORRECTION_TYPE = UNCORRECTED_ERROR_PULSES and the image will not be exposure time corrected. For the EXPOSURE_CORRECTION_TYPE equal to BALLISTIC_PULSES, the turning point is critical to determine the exposure time per CCD line, as it is calculated as the time difference between the shooting and the returning of the first shutter blade.

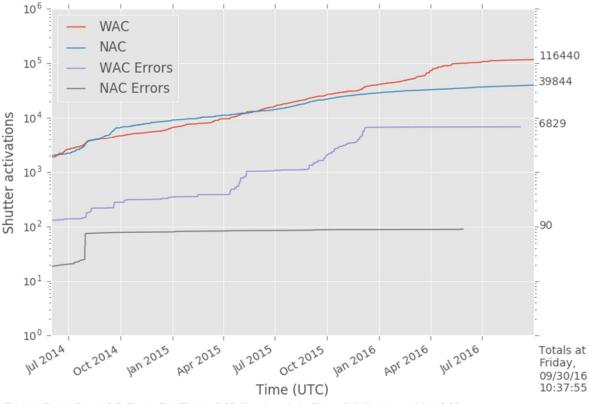
The return (home) position is determined by finding the first position during the return phase where the velocity is less than half of the previous two positions velocity.

2.4.2 Counter rollover

Each counter holds the number of clock pulses since its reset. Considering that these units are 14 bit counters, the number will roll over after 16384 pulses. This rollover is partially handled by the on-board software. Partially means, that the spacecraft software examines the sampled values of the counter, and supposing a continuously increasing time, if the value is smaller than the previous one, the rollover number n is incremented and the pulse count is calculated by increasing its value by $n \cdot 16384$. This method should be corrected when the sampling time interval is larger than 16384/2.1 MHz.

2.4.3 The "ZEROPULSE_FLAG"

To ensure a stable reference point for the blades, the encoders provide an additional signal, a "zero pulse" to the electronics. This is a reference point of the encoder, thus not affected by the mechanical elasticity, or wear out. The position of this pulse is not coincident with the shutter nominal (home) position. During the image acquisition the "ZEROPULSE_FLAG" determines the first sampling position of the pulse count:


- ZEROPULSE_FLAG = FALSE: the first sample in the pulse array is the time count at the first encoder pulse (practically the start of the blade motion).

Date: 29/10/2018

Page: 11

- ZEROPULSE_FLAG = TRUE: the first sample in the pulse array is the time count at the zero pulse position. This gives a more accurate positioning; however the counter rollover during the first time slot must be handled separately.

The keyword ZEROPULSE_FLAG is stored in the image header in the SR_SHUTTER_CONFIG group.

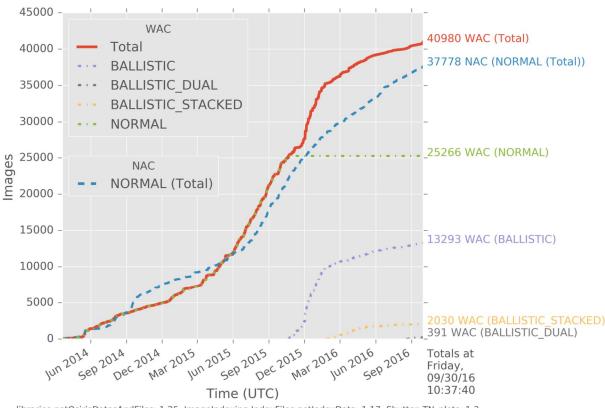
TabulateShutterErrors: 1.7, ShutterErrorTiming: 1.13, libraries.missionPhase: 1.4, libraries.revision: 1.12

Figure 2 Cumulative number of shutter activations and shutter errors in the course of the mission

3 Shutter operation modes

The shutter operations manual RD6 describes the nominal operations of the shutter. After the failure of the latching mechanism in the WAC, preceded by a steep increase in shutter errors that can be seen in Figure 2, the nominal operations mode could not be used any more to acquire images, and a series of 'ballistic' modes has been developed to cope with the non-locking of the first blade. These modes require special treatment during the exposure time correction of the calibration pipeline.

The shutter operation mode used to acquire an image is not directly stored in the level 0¹ image file header on board of the spacecraft, but added on ground into the level 1 image header using the keyword SHUTTER_OPERATION_MODE that is stored in the SR_SHUTTER_CONFIG group. The number of images acquired in each mode can be seen in Figure 3.


¹ In this document, OSIRIS image levels are used. For the correspondence between OSIRIS and CODMAC levels see Table 1 in the OSIRIS EAICD [RD7].

Date: 29/10/2018

Page: 12

In the following, the characteristics of the shutter operation modes are explained. The details of the exposure time correction methods are described in the next section.

libraries.getOsirisDatesAndFiles: 1.25, ImageIndexing.IndexFiles.getIndexData: 1.17, Shutter_TN_plots: 1.3 Considered data from 2014-03-19 23:09:53 until 2016-09-30 10:37:40, Index_pds_level1_tagValues.csv: 1.12

Figure 3 Cumulative number of images per SHUTTER_OPERATION_MODE during comet phase

3.1 NORMAL operation mode

In the NORMAL operation mode the image is acquired according to the description in the shutter manual RD6. The camera is normally configured with test mode disabled. If configured, the 440 data points of the shutter profiles for each blade are attached to the image file and can be used for the exposure time correction. All error conditions can occur. This is the only mode used for all NAC image acquisitions.

In the NORMAL mode of operations, the uniformity of the CCD illumination is better than 1/500. Using calibration data, the deviation of the achieved exposure time to the commanded exposure time was measured, and is given in Table 1.

3.2 The WAC shutter in BALLISTIC operation mode

During summer 2015, the WAC shutter showed an ever increasing number of locking errors (see Figure 2), and eventually failed to lock entirely. To recover science operations, a new operations mode had been implemented, called the "ballistic" mode. This is not described in the shutter operations document [RD6].

In this mode, only the first blade is used (the second blade is disabled). For an exposure, the first blade is fired and moves over the CCD to expose the CCD. The blade is decelerated to reach zero velocity slightly before contacting the latch. The blade then falls back into home position in

Date: 29/10/2018

Page: 13

quasi-ballistic motion driven by spring forces only. This operation mode allows only a fixed exposure time that is different for each line of the CCD, ranging from about 20 ms in the last CCD line to 160 ms in the first CCD line.

The shutter has a sensors that is used to detect whether blade 1 is locked at the beginning of the exposure and unlocked (by blade 2) at the end of the exposure. If those conditions are not met, the hall sensor generates an error (LOCKING ERROR A or UNLOCKING ERROR C).

In the BALLISTIC operation mode blade 1 never locks, thus for each exposure the hall sensor triggers an error.

To enable the storage of more than 440 data points in the shutter profiles, needed to determine the exposure time per line, the WAC shutter was configured with test mode enabled. This configuration also disables the hall sensor, preventing the shutter to generate errors.

Due to the non-nominal operation of the shutter in ballistic mode the error reporting (due to the hall sensor) is not representative of the quality of the image. Therefore, all ballistic images with SHUTTER_FOUND_IN_ERROR_FLAG = TRUE (acquired with test mode disabled) are as well suited for scientific analysis as images with SHUTTER_FOUND_IN_ERROR_FLAG = FALSE (acquired with test mode enabled).

Science operations using the WAC in BALLISTIC mode started on 2015-11-15T00:00:00, the acquired in this mode is WAC 2015-11-15T11.11.44.411Z ID10 \ 1397549300 F18.IMG, acquired on 2015-11-15T11:13:04.990 for activity STP082 ONIT 082. The first science image using this mode is WAC 2015-11-18T10.56.36.611Z ID?? 1397549000 F13.IMG, acquired on 2015-11-18T10:57:57 during activity STP083 DUST JET 001. The validity of the average correction file (see below) starts at 2015-11-20T09:00:00.

3.2.1 Tweaking of shutter parameters for the WAC ballistic operation mode.

During the introduction of this mode, the shutter profile parameters where slightly tweaked to enhance performance and repeatability. After extensive testing during October and November 2015, an initial configuration for the ballistic mode was found. The only parameter to improve was the CCD travel distance that describes the distance after which the blade is supposed to decelerate to stop and turn to 'fall' back to the home position. If this parameter is set too large, the blade might make contact to the latch and bounce back, leading to unpredictable behavior and therefore a large spread in flight profiles at the last CCD lines. On the other hand, if the parameter is chosen too short, a part of the CCD is not well illuminated and lost for scientific imaging. Figure 4 shows the value of this parameter from the first test images in ballistic mode.

The average profiles of a number of test shots for each of these parameter sets can be seen in Figure 5. These profiles are used to during calibration for the exposure time correction if there are no profiles attached to the image files. The validity epochs of these data as well as the value of the CCD travel distance used and the sequences containing the test data are listed in Table 3 and visualized in Figure 4.

Date: 29/10/2018

Page: 14

Figure 4 Value of the WAC CCD travel distance. Indicated is also the validity periods of the average shutter profile files used for exposure time correction in the ballistic operation mode.

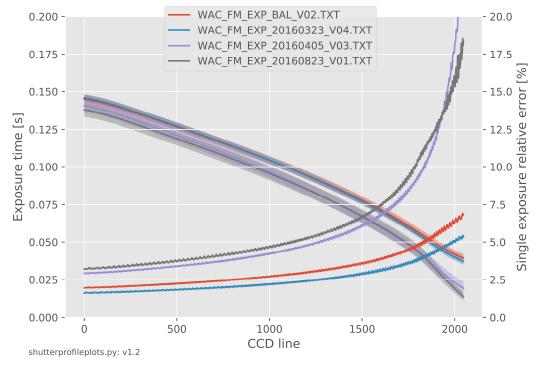


Figure 5 Average exposure time (left axis) and relative error of the average exposure time for a single shutter activation (right axis) per CCD line as derived from the datasets in Table 3 in the ballistic mode in 4 different configurations. See Table 3 for a definition of the sequences.

Date: 29/10/2018

Page: 15

3.3 The WAC shutter in BALLISTIC STACKED operation mode

Because of the fixed (and very short) exposure time in ballistic mode, the amount of light collected during one exposure was not sufficient to allow the usage of all but the brightest filter combinations. A single BALLISTIC mode exposure was fine to image the comet nucleus, but not deep enough for the surrounding coma. To enable the detection of the faint structure in the dust and gas coma the BALLISTIC STACKED mode was implemented.

In this mode, the CCD is exposed during multiple activations of the shutter in ballistic mode, without being read out in between, therefore accumulating the charge in the CCD.

The BALLISTIC_STACKED mode had to be commanded in the bulb mode, using a series of TCAcquireImage and TCMonitorObservation commands, significantly increasing the number of telecommands used by OSIRIS.

The number of repeated shutter activations and the timing of the repeats define the duration of a sequence. The commanding implementation was optimized during the first weeks of execution.

Table 2 summarizes the sequence duration vs number of shutter activations of the most used implementations.

Table 2 Sequences duration in BALLISTIC_STACKED mode. Note that some images in the early phase of the implementation of this mode might have different duration.

n	duration (s)
3	5.15
4	9.15
5	7.15
6	36.15
7	12.15
10	17.15
20	32.15
30	47.15
40	62.15
50	77.15
80	125.15
100	155.15

The shutter activations in a stacked exposure are not equidistantly distributed over the total duration, but follow, in most cases, the scheme below. For a stack of n exposures:

- First shutter activation starts at the corrected start time (START TIME_{cor})
- 2 seconds delay
- n-2 shutter activations executed as fast as possible: The shutter mechanism is activated after all capacitors are recharged. Due to command buffer limitations, the maximum number of shutter activations in a single command is 50. If n > 50, the shutter activations were split in separate commands.
- Last shutter activation finishes at the corrected stop time (STOP TIME_{cor}).

After the completion of the n shutter activations, the CCD is read out and the image header is generated. The START TIME and STOP TIME coming from this last command have to be

Date: 29/10/2018

Page: 16

corrected to set START_TIME to the time of the start of the first shutter activation, and STOP TIME to the time when the last shutter activation was finished.

The command to read out the image is always issued 2 seconds after the last shutter activation starts. The corrected stop time (STOP TIME $_{cor}$) of the image can therefore be calculated as

$$STOP_TIME_{cor} = START_TIME - 2 sec + t_{act}$$

where

START_TIME is the START_TIME generated by the last command

 t_{act} is the duration of one shutter activation (150 ms).

The value of corrected start time (START_TIME_{cor}) is calculated from the corrected stop time (STOP_TIME_{cor}) and the sequence duration from first to last activation of the shutter by the following formula:

$$START_TIME_{cor} = STOP_TIME_{cor} - duration$$

where

duration is the sequence duration (see Table 2)

Please note, that the duration is not equal to the number of stacked exposures (n) times the average exposure duration of a single exposure in ballistic mode.

No blade 1 shutter profiles can be stored for stacked images. Therefore these images have to be calibrated using the average profiles described in Table 3 and Figure 5. In this case, the relative error of the exposure time correction scales down with $1/\sqrt{n}$ for an image with n shutter activations.

Images with up to 100 shutter activations have been commanded. Operations using the mode started on 2016-01-27T00:00:00, the first science image using this mode is WAC_2016-01-27T07.05.45.471Z ID?? 1397549550 F17.IMG, acquired on 2016-01-27T07:07:08.082.

An error is associated with all BALLISTIC_STACKED images: SHE_RESET_ERROR_D. This error is generated any time none of the shutter blades move and therefore the camera does not receive shutter pulses. This error is generated by the last stacking command, which reads out the CCD without any blade movement, since in ballistic mode blade 2 is disables.

As for the ballistic non-stacked images, the error reporting is not representative of the quality of the image: all BALLISTIC_STACKED images with SHUTTER_FOUND_IN_ERROR_FLAG = TRUE are suited for scientific analysis.

3.4 The WAC shutter in BALLISTIC DUAL operation mode

In the planning of the final descent sequence during the end of mission it was recognized that the surface brightness of the comet at the distance and phase angle planned would saturate the CCD when operating in BALLISTIC mode. Therefore the definition of a new mode of operation was necessary.

In the BALLISTIC DUAL operation mode, both blades of the WAC shutter where used again.

The first blade is fired, and using a power profile similar to the one used in BALLISTIC mode slowed down before reaching the position of the latch. The second blade is fired 15 ms after the

Date: 29/10/2018

Page: 17

first blade, with a similar power profile. The second blade is slowed down as well, and both blades travel together back into the home position driven by the bearing spring with a small current in the motor of the first blade to try to prevent reopening of the slit between both blades.

In this mode, the lower part of the CCD is exposed evenly with 15 ms exposure time. Only the last lines of the CCD are affected by a slightly more uneven exposure. Therefore the exposure time correction is equivalent to images taken in NORMAL shutter operation mode. Because during the final descent in an effort to minimize data volume no shutter profiles where acquired, all BALLISTIC_DUAL images are corrected with EXPOSURE_CORRECTION_TYPE = NORMAL NOPULSES.

Start of the science operations with BALLISTIC_DUAL was 2016-09-27. The first scientific image using WAC shutter operation mode BALLISTIC_DUAL is WAC_2016-09-27T22.28.36.427Z_ID??_1397549000_F12.IMG, acquired at 2016-09-27T22:30:05.895 during activity STP129 APPROACH REHEARSAL.

During the final descent of the spacecraft, 114 images including the very last one have been taken in BALLISTIC_DUAL operation mode.

4 Calibration files used by OsiCalliope

For EXPOSURE_CORRECTION_TYPE equal to NORMAL_NOPULSES, the exposure time correction is constant for all lines of the CCD and given in Table 1 of this document.

When no shutter profile information is available for images taken by the WAC in the shutter operation mode of either BALLISTIC or BALLISTIC_STACKED, OsiCalliope uses average shutter profile data for calibrating the exposure time using EXPOSURE_CORRECTION_TYPE equal to BALLISTIC_NOPULSES or BALLISTIC_STACKED_NOPULSES.

Due to changes in the shutter configuration, these profiles had to be updated. The sequences used to acquire the data and the validity epochs are listed in Table 3. Each sequence contains 50 to 200 shutter activations acquiring the shutter profiles for each image. For each image, the line wise exposure time is calculated using the algorithm described for correction type NORMAL PULSES in RD5:

- The shutter pulse array contains the number of clock pulses (2.1 MHz) at certain encoder (angular) positions of the shutter blade arm.
- The encoder positions are transformed into shutter blade positions by the shutter blade transfer functions [RD2, RD3].
- The blade position time function is calculated.
- The difference of the above functions for the two blades at a certain CCD position gives the actual exposure time, for a given pixel. The average of these values is the MEAN EFFECTIVE EXPOSURETIME
- The exposure time is calculated as the difference of the above functions for the two blades at each CCD line position.

The profiles listed in Table 3 are calculated as the line-wise average of exposure times for all files in the sequence and shown in Figure 5. Because the shutter profiles are varying, the flux error caused by varying exposure times can be significant. In Figure 5 it can be seen that the relative error is greater than 5% for the lower half of the CCD (after line ~1080) and reaches 10% from line 1770 for the profile WAC_FM_EXP_20160405_V03.TXT used from April 2016

Date: 29/10/2018

Page: 18

on (See Table 3). For stacked images, this relative error scales down with $1/\sqrt{n}$ for an image with n shutter activations.

Table 3 Acquisition sequences for shutter profiles used in ballistic mode. The file version is given as the lowest version where the ACTIVITY_NAME is valid.

Filename	CCD travel	ACTIVITY_NAME	Acquisition date	Validity epoch	
	distance		uate		
	[mm]				
WAC_FM_EXP_BAL_V02.TXT	24.8	STP097_SHUTTER_PROFILE*	2016-03-01	2015-11-20T09:00:00	
				to	
				2016-03-22T23:59:59	
WAC_FM_EXP_20160323_V04.TXT	24.3	STP101_SHUTTER_TEST*	2016-03-23	2016-03-23T00:00:00	
				to	
				2016-04-05T12:00:00	
WAC_FM_EXP_20160405_V03.TXT	23.8	STP102_SHUTTER_TEST	2016-04-05	2016-04-05T12:00:00	
				to	
				2016-08-26T17:01:29	
WAC_FM_EXP_20160823_V01.TXT	23.3	STP123_SHUTTER_TEST [§]	2016-08-26	2016-08-26T17:01:30	
				to	
				2016-09-30T23:00:00	
*last 100 images in activity					
§Images in activity with sequence					

When no shutter profile information is available for images taken by the WAC in the shutter operation mode of either BALLISTIC or BALLISTIC_STACKED and no valid average correction profile can be found (e.g. for some images in STP083_ONIT_083 taken 2015-11-18), the image is no exposure time corrected and EXPOSURE_CORRECTION_TYPE is set to "UNCORRECTED_MISSING_DEFAULT_PROFILE".

5 Verification of image calibration for on-CCD stacked images using an exemplary sequence

The exposure time correction for images acquired in ballistic mode with and without stacking is assessed using images in one exemplary sequence, STP104 DUST MON 102.

5.1 Description of exemplary sequence STP104 DUST MON 102

In this sequence, developed to monitor the dust environment during a full rotation of the comet and to search for source points of dust jets, a set of four images in two filters is taken at a cadence of 30 minutes. The filters used are 'Red' (F12) and 'Green' (F21). The first image is taken as a single exposure with 'test' mode enabled, and therefore calibrated using the shutter profile saved during exposure, the second image is an on-CCD stack of 50 exposures, and calibrated using the average profile. The data analyzed here has been calibrated using OsiCalliope v1.36.

5.2 Ratio of stacked and non-stacked images

To analyze the calibration of stacked images, the ratio of the single exposure image

• WAC 2016-04-13T07.01.39.229Z ID10 1397549800 F12.IMG

Date: 29/10/2018

Page: 19

and the on-CCD stacked image containing 50 exposures

• WAC 2016-04-13T07.03.17.913Z ID10 1397549351 F12.IMG

was calculated in both level 1 (DN) and level 2 (calibrated in flux units). Characteristics of these images from PDS keywords are given in Table 4.

For level 1 images, the bias has to be subtracted first.

$$R_{L1} = \frac{DN_{\text{Stacked on board}} - BIAS}{DN_{\text{single exposure}} - BIAS}$$

For level 2 images, the images are in units of flux, therefor no further treatment is necessary:

$$R_{L2} = \frac{F_{\text{Stacked on board}}}{F_{\text{single exposure}}}$$

As the stacked image contains 50 exposures, the ratio R_{L1} is expected to have a value of 50 throughout the image. The ratio R_{L2} is expected to have a value of 1.

The ratio is displayed in Figure 6. A circular region of interest was selected in a shadowed region of the comet, as the flux in all images in this region is significantly above BIAS and below saturation.

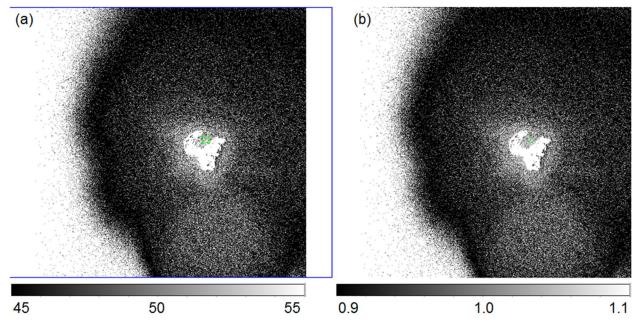


Figure 6 Ratio of single exposed and 50 exposure stacked images in level 1 (left, a) and level 2 (right, b). Values that are in the level 1 image of the single exposure below the BIAS value \pm 50 DN are masked, as well as values in the non-linear regime (DN > 45000). The region of interest is shown in green.

Date: 29/10/2018

Page: 20

Table 4 Selected PDS keywords of the images analyzed.

		WAC_\ 2016-04-13T07.01.39.229Z_\ ID20_1397549800_F12.IMG	WAC_\ 2016-04-13T07.03.17.913Z_\ ID20_1397549351_F12.IMG
	Stacking	1	50
Level 1	SOFTWARE_NAME	OsiTrap.exe	OsiTrap.exe
	SOFTWARE_VERSION_ID	v1.47.0	v1.47.0
Level 2	SOFTWARE_NAME	OsiCalliope.exe	OsiCalliope.exe
	SOFTWARE_VERSION_ID	1.0.0.36	1.0.0.36
	ROSETTA:SHUTTER_OPERATION_MODE	BALLISTIC	BALLISTIC_STACKED
	EXPOSURE_CORRECTION_TYPE	BALLISTIC_PULSES	BALLISTIC_STACKED
	MEAN_EFFECTIVE_EXPOSURETIME <s></s>	0.0921	4.4273
	BIAS_BASE_VALUES <dn></dn>	234.010, 234.010	234.010, 234.010
	BIAS_TEMP_DELTA <dn></dn>	4.251, 4.251	4.132, 4.132

Table 5 Statistics of the region of interest marked in Figure 6

	npix	surf_bri	surf_err	mean	median	min	max	var	stddev	rms
Level 1	1693	51.8323	0.174973	51.8323	51.3003	37.0981	81.4583	26.4147	5.13953	52.0864
Level 2	1693	1.06917	0.02513	1.06917	1.0582	0.764903	1.68036	0.011234	0.105989	1.07441

The statistic of this region is given in Table 5. This shows that while the mean ratio is not exactly as expected (51.8 and 1.06 for level 1 and level 2, respectively) with 4% and 7% the error lies within the expectation and cannot be the cause of a drop in flux of an order of magnitude. The exposure time averaged over all CCD lines for the two images are given in Table 4 with 0.0921 s for the single exposure and 4.4273 s for the stack of 50. The ratio of these numbers is

$$R_{\text{EXP}} = \frac{4.4273 \text{ s}}{0.0921 \text{ s}} = 48.07,$$

which is a deviation of 3.9% compared to the expected ratio of 50.