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1. MOTIVATION

In analyzing visual data from multiple observers, the questions inevitably arise

of which data to reject, and under what justification, and whether combining data

from observers, each with his or her own systematic errors, leads to a biased result.

Without instrumental calibration, there is no certain answer to these questions, but as

discussed by (Kidger 2002; Mousis et al. 2014), such calibration is itself problematic,

and in any case is not available for the observations discussed here.

We offer a systematic approach to combining data from multiple observers yielding

a self-consistent consensus fit. In application to comet C/1995 O1 (Hale-Bopp), the

procedure does not significantly affect the grossest measure, namely the slope of

magnitude vs. log distance, but, applied to data already corrected to heliocentric

distances and for phase, does reduce the statistical error bars.

We assume three categories of errors:

1. Every observer reports the brightness of an object on a scale that is shifted up

or down from other observers, but by the same number of magnitudes, δobs,

independent of distance or brightness. Without instrumental calibration, we

can best estimate δobs as that observer’s mean deviation from a consensus fit to

the data (that is, an average).

2. Some observers may have a slope bias, underestimating the brightness of dimmer

objects and overestimating those of brighter ones, or vice-versa. While it is

difficult to correct for such error without calibration, the bias can be detected

(relative to the consensus fit), and that observer’s data discarded.

3. Finally, some observers may have a great deal of scatter in their data but no

bias. We can weight these observations less in fits.
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1.1. Method

We seek a consensus fit to the data. The comet exhibits small but noticeable

deviations from a power law (intensity ∼ r−s) on time (distance) scales larger than

any outbursts. In particular, nearly all pre-perihelion data between 2 and 1 a.u.

suggest a negative curvature in the graph of magnitude against log distance.

A straight-line fit would penalize observations that report this feature accurately.

Based on the total number of apparent features between the closest (0.91 a.u.) and

furthest (9.4 a.u. post-perihelion) observation, we fit to fifth-order polynomials. The

effect is to smooth the data.

The deviations between an observer’s measurements and the consensus fit at the

same distance are considered noise. The set of all such deviations by one observer

defines the noise distribution for that observer, characterized by a mean δobs, variance

σ2
obs, skewness, excess kurtosis, etc.

To compute the self-consistent fit, we iterate the following steps until convergence

to a fractional tolerance of 0.0001 (absolute tolerance if any fitting parameter is less

than 0.0001) of all six polynomial fitting parameters:

1. We fit a fifth-order polynomial through all the data of the (possibly shifted)

magnitudes against log distance by the method of least squares (Legendre

1806), weighting each observation inversely as the observer’s variance of devia-

tions, σ2
obs Initially, the magnitudes have been corrected for geocentric distance

and for phase angle, but have not been shifted. Also initially, the weights are

all equal, because we do not know the distributions of deviations.

2. Using the same data as in 1, we can also fit a straight line, recovering the

slope (power law) −s and statistical error bars on that fit based on the shifted,

weighted data.

3. For each observer, we consider the distribution of deviations between the obser-

vations and the fit at the given distance (i.e., in the graph, the vertical vectors

between data points and the polynomial fit). For each observer separately, we

treat the distribution as noise and estimate the mean, δobs, and variance, σ2
obs.

4. For each observer separately, we shift all magnitudes by −δobs as computed in

Step 3.

For the present data set, these iterations converge to the specified tolerance after

between ten and twelve iterations. We now have a self-consistent fit and set of shifted

data. Row 4 of Table 1 shows small changes in best-fit slopes after the procedure.

This is reflected in visibly smaller scatter in the lightcurve; the statistical error fitting

to a straight line has been cut roughly in half. Note that non-straight-line features in

the consensus polynomial fit limit how far the statistical error bars in a straight-line

fit can shrink.
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Table 1. Best-fit slopes for pre-perihelion and post-perihelion obervations before and
after corrections and the self-consistent method of this appendix. Lines 4 and 5 use self-
consistently shifted magnitudes and weight each observer’s data inversely as σobs, the vari-
ance of the noise. The fitting method reduces statistical error but does not significantly
alter the slope estimates.

pre-perihelion post-perihelion
1. raw data 11.33 ±0.08 12.66 ±0.07
2. geocentric distance correction only 8.06 ±0.05 9.14 ±0.07
3. geocentric distance and phase corrections 9.14 ±0.05 9.92 ±0.07

4. self-consistent shifts 9.15 ±0.02 9.85 ±0.03
5. drop observers, self-consistent shifts 9.09 ±0.03 9.80 ±0.04

The self-consistent procedure has eliminated the need to discard data arbitrarily

(e.g., points more than some number of standard deviations above or below a con-

sensus fit, which otherwise would throw off least-squares fits) by weighting points

inversely as the observer’s variance. However, as noted above, an observer whose

systematic error changes with brightness would still affect the slope adversely. We

can detect such a systematic problem by applying Student’s t-test to each observer’s

data set, comparing the difference of the mean deviation from the consensus fit in

the first half of the observer’s data (sorted by distance) to the mean deviation in the

second half. Since the variances of the two halves may not be equal, we normalize

by the “pooled variance” to get an approximate t-statistic. Assuming approximately

Gaussian noise (not always justified), we calcluate the p (probability) value that the

t-statistic would be as large as observed or larger under the null hypothesis that first

and second halves of the data were drawn from the same distribution, i.e., that the

observer did not contribute bias to the slope relative to the consensus.

For a p value less than 0.05, we reject the null hypothesis and say that the observer

“fails” the t-test; that is, his or her data bias the slope. We then discard such

observers from the data set and repeat the self-consistent iteration (steps 1–4). If

repeating the t-test at the end of second set of iterations results in more observers

failing the t-test, we then repeat the procedure until no new observers are discarded.

For the pre-perihelion data, one new observer failed the t-test after the second set of

iterations, so we iterated a third time without that observer’s data. At the end of the

third set of iterations, no new observers failed the t-test.

As shown by Line 5 of Table 1.1, throwing out observers results in small changes

in the slopes. For the pre-perihelion data, seven observers out of 17 were discarded,

accounting for 430 of the original 1,003 data points. For post-perihelion data, four

out of 12 observers were discarded, accounting for 232 out of the original 486 data

points.

For comet Hale-Bopp, the self-consistent procedure resulted in adjustments to the

slope roughly comparable to the original statistical error bars, while cutting these

approximately in half. These changes are far smaller than those associated with
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correcting for heliocentric distance and phase. The observations considered in the

present work were taken by skilled amateurs calibrated by eye to stars in generally

reliable catalogs. Future work may rely on less homogeneous amateur networks, in

which case a self-consistent method for combining and weighting magnitudes, and

discarding subsets with systematic slope bias, could prove useful.
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pour la détermination des Orbites des
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