METEOR STUDIES NETWORK 1. INTRODUCTION The Meteor Studies Network was established following the recommendation of the International Halley Watch (IHW) Steering Group (Prague, June 1984). Its personnel is listed in Table I. The Discipline Specialist team was responsible for the scientific program and coordination of meteor studies in the IHW. The program provided an opportunity to coordinate and combine many different types of observations relating to the Halley meteor showers. The main observing techniques utilized meteor radars and visual recording (naked- eye). Very few observations (direct or spectroscopic) were obtained with cameras or with photoelectric devices, and none were archived. Table I. The Meteor Studies Discipline Specialist Team ______________________________________________________________________________ Team Member Affiliation Responsibility ______________________________________________________________________________ P.B. Babadzhanov Tajik Astrophysical Institute Discipline Specialist 734042 Dushanbe U.S.S.R. A. Hajduk Astronomical Institute SAV Discipline Specialist CS-84228 Bratislava Czechoslovakia B.A. Lindblad Lund Observatory, Box 43 Discipline Specialist S-22100 Lund Sweden B.A. McIntosh National Research Council Canada Discipline Specialist Ottawa Canada K1A 0R6 ______________________________________________________________________________ 2. THE HALLEY METEOR SHOWERS The Earth makes two close approaches to the comet orbit, once in early May, and again in late October. In common with other comet-produced meteor streams, the dust ejected from Halley is dispersed along the orbit and laterally from the orbit; but, uncommonly in meteor astronomy, the Earth passes twice every year through the band of Halley particles, thus producing the long-known Eta-Aquarid (May) and Orionid (October) meteor showers. Most of the meteor activity is confined to a period of about five days in each case. However, this period is not well defined; shower meteors have been observed over as long as fourteen days. Furthermore the activity is not consistent from year to year -- the position in time of maximum flux shifts significantly and there are secondary maxima. Hence an activity curve for one year is not a reliable predictos for the activity in another year. If averaged over many years, a broad flat curve results, which again is not indicative of annual activity. Traditional visual observations have never been carried out over suffici- ently long intervals of time to define clearly the structure of the stream. Radar observations have contributed to our understanding of the structure, but they are also not without problems. A paper by Hajduk (1970) summarizes visual and radar observations from 1900 to 1969. There are also some earlier, medieval and ancient observations. The geometric relation between the Earth's orbit and the comet's current orbit suggests that the two showers should not be of equal strength or equal duration, which is contrary to actual observations. A recent theory (McIntosh and Hajduk 1983; McIntosh and Jones 1988) proposes that the long-term evolution of comet and dust results in a flat ribbon of particles so that the Earth's two crossings yield approximately equal-activity, equal-duration showers. Observationally the meteors are very fast (V > 65 km/s for both showers), with persistent trains being common. Studies of the physical characteristics and composition of the particles are sparse, but there is no evidence that they are unusual. The visual rates for the showers may be as high as 30 per hour depending on the latitude of the observer. The low-declination radiant of the May shower (in Aquarius, at R.A. = 335.5 deg, Dec = -1.9 deg) rises only a little before sunrise, particularly at high northern latitudes, providing a very limited period for visual or optical observations. More extensive coverage by Southern Hemisphere observers was needed. The observing period for the Orionids extends through nearly the entire night because of the radiant's much greater elongation from the Sun (R.A. = 94.5 deg, Dec = +15.8 deg). The higher declination and time of the year favour Northern Hemisphere observers. Studies benefit also from observations at many longitudes around the Earth. This is true of the Eta-Aquarids in particular. 3. SCIENTIFIC GOALS Meteor observations are specifically oriented toward studies of comet- meteor relationships. They contribute to comet science mainly in the areas of dust production and the dust-particle dynamics. These aspects can be enhanced by: o determination of the number density and mass distribution of particles in the showers, o determination of the properties and composition of the particles, o study of the evolution of the Halley meteor stream, o study of the spatial structure of the stream, especially as a function of particle mass. The IHW program provided an opportunity to coordinate and combine many different observations to determine the stream structure with high resolution and to infer from this the production and dynamical evolution of the larger dust particles. This goal is independent of the current comet passage. No increase in normal meteor shower rates was expected, and none was observed. It was thought that the more rapid and wider dispersal of fine particles might contribute fresh meteors observable on sensitive instruments. These were searched for with the Canadian High-Power Meteor Radar, particularly at the time of the Earth's passage through the comet orbit plane, but results were negative. 4. OBSERVATIONS 4.1 General The disintegration of a meteoroid in the Earth's atmosphere produces light and ionization, both of which have a complex relation to the enrgy (mass and velocity) of the particle. A meteor trail can reflect radio waves, producing "echoes" having measurable parameters such as amplitude and duration which can be related to the properties and energy of the particle. Some radars are able to determine meteor velocity. The luminous meteor is a point source moving with sufficiently high angular velocity that the human eye is a more sensitive detector than typical lenses and photographic emulsions. However, the eye is not a particularly satisfactory quantitative recorder of brightness and position. The current sensitivity of electronic imaging devices much exceeds that of the human eye. Spectral measurements are particularly simple because the meteor is a self- produced "slit". However, orientation of the "slit" is not under control and therefore not always optimum with respect to the spectral dispersion. High dispersion spectra permit detailed studies of meteoroid composition and thus give valuable information on the solid component of the cometary nucleus. 4.2 Techniques and Methods In order to cover as wide a mass range of meteors as possible, a variety of ground-based techniques is required. The resulting data are of many types and in many formats. In general the data occur in two basic forms -- statistical counts and single events. It was established that all statistical counts would be for one-hour intervals. These observations range from a simple count of meteors seen, to diversified radar echo counts in multiple interval classes of range (distance) and/or echo duration or echo amplitude. Details of observing procedures and data formats are given in Attachments A (STANDARDS) and B (DATA FORMATS FOR METEOR STUDIES). Forms used for amateur visual observations may be found in the IHW Amateur Observations Network. It was stressed to all observers that it was important to distinguish carefully between meteors belonging to the Halley showers and those that are background or other shower meteors. Shower counts are at best slightly higher than background counts and at worst only a small fraction thereof. Visual observations require an almost instantaneous judgement on a fleeting event, based primarily on extrapolating the trail back to the radiant, and secondarily on consideration of the velocity of the meteor. The much greater precision of photographs or photoelectric imaging makes distinction easier. Some radars are able to distinguish on the basis of velocity and/or the geometry of the trail, but for others, shower counts are obtained only by subtraction of an assumed background rate. Although careful counting of shower meteors was deemed paramount, experi- enced observers were encouraged to estimate magnitudes to the nearest half or whole magnitude. Less importance was attached to ancillary characteristics such as meteor colour or train duration. It was required that radar meteor echo counts be made in standardized class intervals of echo duration and amplitude. 4.3 Periods for Observing Major activity takes place at solar longitudes 42.5-47 deg (May 3-8) for the Eta Aquarid shower and 206-210 deg (Oct 19-24). At least two other relatively stable secondary maxima have been observed in both showers. They are distinctly separated from the main zones at longitudes 38 deg and 50 deg (Apr 28/29 and May 10/11) and at 203 deg and 215 deg (Oct 16/17 and 28/29). The maximum at the beginning of each shower is of particular interest since it is thought to contain particles of most recent vintage. As noted earlier, activity extends over as much as fourteen days--between solar longitudes 37 and 51 deg (Apr 27-May 11) and between 202 and 216 deg (Oct 15-30), with priority given to the central interval. The lunar phase is significant for visual observations and was reasonably good for the two years: the new moon occurred on 28 October 1985 and 9 May 1986. 4.4 Results The suite of data which has been archived consists of radar meteor counts and visual observations. The radar stations which provided data are listed in Attachment C. They range from latitude +54 deg to -33 deg, longitude 75 deg W (285 deg) to 69 deg E. Observations of both the Eta Aquarid and Orionid meteor showers from 1984 through 1988 are included--a total of 5662 hours of data. (Note that this count includes duplicate hours.) The details are listed in Attachment D. The visual observations of meteors which were accumulated by the Amateur Observations Network were processed by Dr. A. Hajduk and his colleagues at the Interplanetary Matter Division, Slovak Astronomical Institute, Bratislava, Czechoslovakia. Based on their considerable experience in processing visual meteor observations, they found that approximately 2/3 of the sets of observa- tions were of acceptable quality. The data encompass over 1600 hours of observations of the showers in the years 1984 to 1987 with a few hours also from 1982. A summary of the data is given in Attachment D; observing sites and observers are listed in Attachment C. 5. REFERENCES Hajduk, A. (1970). Bull. Astron. Inst. Czech. 21, 37. McIntosh, B.A., and Hajduk, A. (1983). Mon. Not. R. Astron. Soc. 205, 931. McIntosh, B.A., and Jones, J. (1988). Mon. Not. R. Astron. Soc. 235, 673. P.B. Babadzhanov A. Hajduk Tajik Astrophysical Institute Astronomical Institute SAV 734042 Dushanbe 84228 Bratislava USSR Czechoslovakia B.A. Lindblad B.A. McIntosh Lund Observatory, Box 43 National Research Council Canada S-22100 Lund Ottawa Sweden Canada K1A 0R6 ATTACHMENT A: STANDARDS A.1 Time The time interval for counts--either visual or radar--shall be one hour. A count for an interval of greater than, or equal to, one-half hour may be prorated to an equivalent hour count. Intervals shorter than one-half hour should be discarded. The tabulated absolute time for a count shall be the beginning of the hour. A.2 Radar Meteors A.2.1 Range class intervals Preference is for counts that are given in range class intervals which are not less than 10 kilometres, and not greater than 20 kilometres. A.2.2 Duration class intervals Minimum standard. There shall be at least three duration classes: (1) counts of long-duration echoes down to the value t1, (2) counts of medium-duration between t1 and t2, (3) counts of short-duration echoes having durations less than t2; where either t1 or t2 shall be one (1) second, and the ratio t1/t2 shall be >2. A.2.3 Radio magnitudes For purposes of standardization, meteor electron line densities q shall be quoted in electrons/meter or on a logarithmic magnitude scale Mr, where Mr = 40 - 2.5 x log10(q). A.3 Visual Meteor Counts Magnitude may be estimated to the nearest half or whole magnitude. A value given as magnitude 3 shall be deemed to lie in the interval 2.5 to 3.5, etc. ATTACHMENT B: DATA FORMATS FOR METEOR STUDIES FITS headers include the standard IHW Mandatory keywords. The notes below apply to the keywords as used by the Meteor Discipline. The main header is in Table B-I. Table B-I. Main Header __________________________________________________________________________ KEYWORD EXPLANATION FORMAT __________________________________________________________________________ BITPIX = 8 \ 8-bit characters EXTEND = T \ Yes, a table DAT-FORM = 'ASCII ' OBJECT Name of meteor shower 'ORIONID' or 'ETA-AQUARID' FILE NUM = File number--Beginning with 9 and followed by a unique 5-digit num- ber DATE-OBS UT date of middle of observing pe- riod. See notes for shower periods 'DD/MM/YY' TIME-OBS UT time of middle of observation. Not significant for meteor observa- tions and therefore usually given as 0.0 DISCIPLN IHW Discipline 'METEOR STUDIES' SYSTEM Key to finding observing system in discipline/station catalog. Insti- tutes with long-standing observing instruments are listed in Attach- ment C '9uuuccnn' OBSERVER 'Onename,I' or or SUBMITTR 'Oneperson,J/Otherperson,K' or 'Firstperson,L/ET AL' if more than two DAT-FORM 'ASCII ' data are in character form, usually implying tables and BITPIX=8. OBSVTORY name of submitting observatory 'Tadjik Astrophy Inst' LOCATION location of submitting observatory 'Dushanbe, USSR' LIM-SENS threshold sensitivity for obser- vations not cataloged by SYSTEM. Given as limiting magnitude (pho- tographic, visual, or equivalent radio magnitude or electron line '+8M radio' density) '10**14 electron/m' QUALITY estimate of the quality of the ob- servation on a scale of: 1 = poor, to 5 = excellent, with 0 = unknown 2 __________________________________________________________________________ An extension header is signalled by the lines shown in Table B-II. Table B-II. Extension Header ________________________________________________________________________ XTENSION = 'TABLE ' BITPIX = 8 / 8-bit characters NAXIS = 2 NAXIS1 is the width (or line length) of the table NAXIS2 is the number of lines in the table - frequently the number of hours represented by the observations if they are presented as one hour per line ________________________________________________________________________ Data records are specific to a type of observation, a particular observa- tory, etc., and cannot all be described here. We provide examples for a meteor radar in Table B-III and for visual observations in Table B-IV. The data in Table B-III are echo counts in class intervals of duration and range in one-hour intervals. Time is included. It is to be emphasized that there are differences among the formats set up by the various institutions. Table B-III. Example of EXTENSION Header and Data for Meteor Radar Observations ______________________________________________________________________________ XTENSION= 'TABLE ' / table extension BITPIX = 8 / bits per character NAXIS = 2 / dimensions of table NAXIS1 = 100 / characters per line NAXIS2 = 193 / hours of observations PCOUNT = 0 / no random parameters GCOUNT = 1 / only one group TFIELDS = 35 / fields per line EXTNAME = 'ORIONIDS 86' / name of table COMMENT Description of the table columns. COMMENT There is one space between each field. TTYPE1 = 'YR ' / year TBCOL1 = 1 / starting column TFORM1 = 'I2 ' / 2-digit integer TTYPE2 = 'MO ' / month TBCOL2 = 4 / starting column TFORM2 = 'I2 ' / 2-digit integer TTYPE3 = 'DA ' / UT day TBCOL3 = 7 / starting column TFORM3 = 'I2 ' / 2-digit integer TTYPE4 = 'HR ' / UT hour TBCOL4 = 10 / starting column TFORM4 = 'I2 ' / 2-digit integer TTYPE5 = 'TOTAL ' / total hour count TBCOL5 = 13 / starting column TFORM5 = 'I3 ' / 3-digit integer TTYPE6 = '>=1sec ' / count for durations >=1 sec TBCOL6 = 17 / starting column TFORM6 = 'I3 ' / 3-digit integer TTYPE7 = '>=8sec ' / count for durations >=8 sec TBCOL7 = 21 / starting column TFORM7 = 'I2 ' / 2-digit integer TTYPE8 = ' 75 ' / count in 10km range class 70-80 km TBCOL8 = 24 / starting column TFORM8 = 'I1 ' / 1-digit integer TTYPE9 = ' 85 ' / count in 10km range class TBCOL9 = 26 / starting column TFORM9 = 'I2 ' / 2-digit integer TTYPE10 = ' 95 ' / count in 10km range class TBCOL10 = 29 / starting column TFORM10 = 'I2 ' / 2-digit integer TTYPE11 = '105 ' / count in 10km range class TBCOL11 = 32 / starting column TFORM11 = 'I2 ' / 2-digit integer TTYPE12 = '115 ' / count in 10km range class TBCOL12 = 35 / starting column TFORM12 = 'I2 ' / 2-digit integer TTYPE13 = '125 ' / count in 10km range class TBCOL13 = 38 / starting column TFORM13 = 'I2 ' / 2-digit integer TTYPE14 = '135 ' / count in 10km range class TBCOL14 = 41 / starting column TFORM14 = 'I2 ' / 2-digit integer TTYPE15 = '145 ' / count in 10km range class TBCOL15 = 44 / starting column TFORM15 = 'I2 ' / 2-digit integer TTYPE16 = '155 ' / count in 10km range class TBCOL16 = 47 / starting column TFORM16 = 'I2 ' / 2-digit integer TTYPE17 = '165 ' / count in 10km range class TBCOL17 = 50 / starting column TFORM17 = 'I2 ' / 2-digit integer TTYPE18 = '175 ' / count in 10km range class TBCOL18 = 53 / starting column TFORM18 = 'I2 ' / 2-digit integer TTYPE19 = '185 ' / count in 10km range class TBCOL19 = 56 / starting column TFORM19 = 'I2 ' / 2-digit integer TTYPE20 = '195 ' / count in 10km range class TBCOL20 = 59 / starting column TFORM20 = 'I2 ' / 2-digit integer TTYPE21 = '205 ' / count in 10km range class TBCOL21 = 62 / starting column TFORM21 = 'I2 ' / 2-digit integer TTYPE22 = '215 ' / count in 10km range class TBCOL22 = 65 / starting column TFORM22 = 'I2 ' / 2-digit integer TTYPE23 = '225 ' / count in 10km range class TBCOL23 = 68 / starting column TFORM23 = 'I2 ' / 2-digit integer TTYPE24 = '235 ' / count in 10km range class TBCOL24 = 71 / starting column TFORM24 = 'I2 ' / 2-digit integer TTYPE25 = '245 ' / count in 10km range class TBCOL25 = 74 / starting column TFORM25 = 'I2 ' / 2-digit integer TTYPE26 = '255 ' / count in 10km range class TBCOL26 = 77 / starting column TFORM26 = 'I2 ' / 2-digit integer TTYPE27 = '265 ' / count in 10km range class TBCOL27 = 80 / starting column TFORM27 = 'I2 ' / 2-digit integer TTYPE28 = '275 ' / count in 10km range class TBCOL28 = 83 / starting column TFORM28 = 'I2 ' / 2-digit integer TTYPE29 = '285 ' / count in 10km range class TBCOL29 = 86 / starting column TFORM29 = 'I2 ' / 2-digit integer TTYPE30 = '295 ' / count in 10km range class TBCOL30 = 89 / starting column TFORM30 = 'I2 ' / 2-digit integer TTYPE31 = '305 ' / count in 10km range class TBCOL31 = 92 / starting column TFORM31 = 'I1 ' / 1-digit integer TTYPE32 = '315 ' / count in 10km range class TBCOL32 = 94 / starting column TFORM32 = 'I1 ' / 1-digit integer TTYPE33 = '325 ' / count in 10km range class TBCOL33 = 96 / starting column TFORM33 = 'I1 ' / 1-digit integer TTYPE34 = '335 ' / count in 10km range class TBCOL34 = 98 / starting column TFORM34 = 'I1 ' / 1-digit integer TTYPE35 = '345 ' / count in 10km range class TBCOL35 = 100 / starting column TFORM35 = 'I1 ' / 1-digit integer END ______________________________________________________________________________ Data Record In the following, the first two lines would not appear in the data record but are entered here to show the headings and column alignment. The third line is the actual first line of the data record. It represents a string of 100 ASCII characters. 75 95 115 135 155 175 195 215 235 255 275 295 315 335 YR MO DA HR TOT >=1 >=8 85 105 125 145 165 185 205 225 245 265 285 305 325 345 86 10 16 14 304 8 2 0 0 0 0 4 6 28 20 30 26 22 22 22 24 12 12 6 8 8 14 8 6 6 4 8 2 6 0 Practices and procedures for visual meteor observing may be found in the description of the Amateur Observations Network. Table B-IV. Example of EXTENSION Header and Data for Visual Meteor Observations ______________________________________________________________________________ XTENSION= 'TABLE ' / table extension BITPIX = 8 / bits per character NAXIS = 2 / dimensions of table NAXIS1 = 40 / characters per line NAXIS2 = 134 / number of lines in the table PCOUNT = 0 / no random parameters GCOUNT = 1 / only one group TFIELDS = 10 / fields per line EXTNAME = 'ETA-AQUARIDS85' / name of table COMMENT Description of the table columns. TTYPE1 = 'YR ' / year TBCOL1 = 3 / starting column TFORM1 = 'I2 ' / 2-digit integer TTYPE2 = 'MO ' / month TBCOL2 = 6 / starting column TFORM2 = 'I2 ' / 2-digit integer TTYPE3 = 'DAY ' / UT day & fraction TBCOL3 = 10 / starting column TFORM3 = 'E5.2 ' / 5-DIGIT 2 DECIMAL PLACES TTYPE4 = 'TIME ' / total minute count TBCOL4 = 16 / starting column TFORM4 = 'I3 / 3-digit integer TTYPE5 = 'OBS ' / observer number TBCOL5 = 20 / starting column TFORM5 = 'I3 ' / 3-digit integer TTYPE6 = 'SITE ' / site number TBCOL6 = 24 / starting column TFORM6 = 'I3 ' / 3-digit integer TTYPE7 = 'F-STAR ' / faintest magnitude visible TBCOL7 = 29 / starting column TFORM7 = 'E3.1 ' / 3-digit 1 decimal place TTYPE8 = 'CLOUD ' / cloud cover in % TBCOL8 = 33 / starting column TFORM8 = 'I2 ' / 2-digit integer TTYPE9 = 'NUM-SH ' / count shower meteors TBCOL9 = 35 / starting column TFORM9 = 'I3 ' / 3-digit integer TTYPE10 = 'NUM-NS ' / count non-shower meteors TBCOL10 = 38 / starting column TFORM10 = 'I3 ' / 3-digit integer END ______________________________________________________________________________ Data Record In the following, the first line would not appear in the data record but itis entered here to show the headings and column alignment. The second line is the actual first line of the data record. It is a string of 40 ASCII characters. YR MO DAY TME OBS STE MAG CL SH NS 85 4 17.81 60 66 318 6.6 0 0 25 ATTACHMENT C: SYSTEM CATALOG The keyword SYSTEM in the Meteor Studies data format is made up as follows: Meteor Studies Country \ / 9uuuccnn / \ IAU observatory number (if Instrument (number assigned one exists, otherwise 500) by Meteor Studies Network) Of the detailed list of instrument types given in the Meteor Studies Handbook, only that for meteor radars survived. No optical data were received, and for naked-eye visual observations, the site numbers and observer numbers listed below in Tables C-I and C-II are included in each data table. Table C-I. Meteor Radar Stations ____________________________________________________________________________________________________________________________ SYSTEM Station Coord. Freq. Peak Pulse Pulse Min. Antenna system Notes, special Long. power repet. durat. line. (observing method) programs, etc. Lat. freq. dens. (~) (MHz) (kW) (Hz) (fs) (el/m) ____________________________________________________________________________________________________________________________ 95000700 Budrio 11.63 42.7 200 140 10 1.0 Interferometric; fixed Computer recording; 44.55 E14 elevation and azimuth Heights 95002401 Dushanbe 69.0 37.5 26 500 40 2.0 2 Yagi arrays pointing Computer recording; 38.5 E13 E and N; fixed elevation Velocities 95003508 Ondrejov 14.78 37.5 40 500 10 1.0 6 dipole array at 45 deg Film speed 3.36m/hr 49.92 E13 elev.; steerable in azimuth 95005409 Onsala 12.00 32.6 25 50 10 1.0 Half-wave dipole (Tx), Film speed 10.0m/hr 57.40 E14 steerable Yagi array (Rx) 95002110 Ottawa 284.53 32.7 25 120 20 2.5 Omnidirectional Film speed 1.25m/hr 45.20 E13 (crossed dipoles) 95001312 Grahamstown 26.52 28 40 500 1000 1.0 Array of half-wave dipoles; Direction of arrival; -33.30 E13 fixed elevation and azimuth Doppler shifts (winds) ____________________________________________________________________________________________________________________________ Table C-II. Visual Sites _____________________________________________________________ Site No. Long. Lat. Elev. (deg,arcmin) (meter) _____________________________________________________________ POTSDAM 102 13 01 52 23 34 RADEBEUL 103 13 38 51 06 180 ARNSTADT 104 10 54 50 48 CARLSFELD 105 12 35 50 26 BERLIN 106 13 34 52 25 LIMBACH 107 12 46 50 50 KARL-MARX-STADT 1 108 12 57 50 52 WEISSWASSER 109 14 38 51 29 160 MARSASCALA 110 14 34 35 52 56 AROSIO 111 9 38 46 42 1500 DEMEN 112 11 26 53 23 DRESDEN 113 13 48 50 58 GOLM 114 12 57 52 24 35 KARL-MARX-STADT 2 115 12 54 50 48 250 SCHNEEBERG 116 12 38 50 36 SOHLAND 117 14 25 51 01 HAVDRUP 118 12 07 55 32 KLOVBORG 119 9 28 55 55 HADERSLEV 120 9 35 55 17 CAMBRIDGE 121 357 39 51 45 BOLY 122 18 32 45 52 128 BAJA 123 18 57 46 11 FOT 124 19 12 47 39 LAJOS FORRAS 125 19 00 47 45 550 SULYSAP 126 19 32 47 27 200 TATA 127 18 24 47 40 200 KAJDACS 128 18 37 46 34 MEZOBERENY 129 21 00 46 48 OROSHAZA 130 20 41 46 34 VASAS 131 16 46 47 05 ZALAEGERSZEG 132 16 50 46 50 SATU-NOU 133 24 38 47 08 TAMPERE 135 23 37 61 30 150 RAUMA 136 21 29 61 08 PARTALANKOSKI 137 25 05 61 53 HELSINKI 138 25 11 60 11 2 HEGGEDAL 139 10 24 59 47 KONGSBERG 140 9 36 59 42 VIBY 141 10 42 55 30 RONNE 142 14 43 52 09 BRONDBY 143 12 25 55 39 ULM 144 10 02 48 27 NEAR FISCHEN 145 10 13 47 29 GROSS WOKERN 146 12 29 53 45 PAPA 147 17 27 47 22 GUSTROW 149 12 09 53 47 BASDORF 150 13 27 52 43 50 CATANZARO 151 16 36 38 54 COMO 152 9 3 45 49 FGURA 153 14 31 35 52 47 ZURRIEG 154 14 25 35 51 30 MOSTA 155 14 26 35 54 MSIDA 156 14 50 35 54 ZAVADA 157 19 44 48 32 VARTOVKA 158 19 09 48 43 DELHI 201 77 20 28 40 ARUYAMA 202 136 06 35 09 100 HOSHINOKITSUSASHITSU 203 141 08 39 28 71 MUROH-NARA 204 136 01 34 34 400 KINOE-CHO HIROSHIMA 205 132 55 34 13 2 MT. TSUKUBA 206 140 08 36 12 360 KANAYA TOYAMASHI 207 137 10 36 41 15 KITAJIMA TAINOHAMA 208 134 33 34 07 2 SAYAMA OBS. 209 139 28 35 51 46 KAWAUCHI KIRYU 210 139 20 36 10 55 MATSUE 211 133 07 35 26 OHCHI-GUN 212 132 27 34 53 KAWASAKI OBS. 213 135 23 34 23 75 KAWATANA 214 129 50 33 04 10 KAMI TOWN 215 134 53 35 06 FUKUMITMACHI TOYA 216 136 54 36 33 72 KITAOJI OTSU 217 135 53 34 58 233 HIGASHI-SON, OKINAWA 218 128 13 26 38 100 SHIROYAMA 219 137 14 34 54 136 NEAR FUJINOMIYA 220 138 48 35 20 1455 CARTER OBS. 301 174 46 -41 17 BROWN OWL OBS. 302 175 06 -41 06 140 MANA OBS. 303 174 52 -41 05 GLENEAGLE 304 116 25 -32 20 DRYANDRA 305 117 11 -32 49 DARKES FOREST 306 150 50 -34 13 BUNDABERG 307 152 21 -24 50 KARNET 308 116 05 -32 31 THORNLIE 309 115 58 -32 02 BYFORD 310 116 01 -32 15 BLACK BIRCH 311 173 48 -41 48 AUCKLAND 312 174 47 -36 51 GAWLER 314 138 45 -34 36 KALAMUNDA 315 116 04 -31 59 YORKRAKINE 316 117 35 -31 26 BELMONT 317 151 35 -33 00 BALLAJURA 318 115 50 -31 49 RIVERVALE 319 115 56 -31 56 ROLEYSTONE 320 116 05 -32 07 GIDGEGANUP 321 116 17 -31 42 BAROSSA VALLEY 322 138 56 -34 34 COOTAMUNDRA 323 148 03 -34 41 PAVAVTANANUI FIELD S 324 174 56 -41 08 TOODYAY 325 116 28 -31 35 JARRAHDALE 326 116 05 -32 20 COLO 327 149 36 -31 55 COONABARRAN 328 149 30 -31 06 BROOME 329 122 12 -18 00 PERTH 330 116 00 -32 00 EWA BEACH 401 201 59 21 20 BARBERS POINT 402 201 57 21 20 KIPAPA GULOH 403 201 59 21 26 PEARL HARBOUR 404 202 05 21 25 DALLAS 405 263 21 32 43 MC KENDREE 406 283 22 38 47 ROSEBURG 407 237 13 43 22 WHITTAKER PEAK 408 241 18 34 34 914 SAN DIEGO 409 242 59 32 42 NEAR BELLEFONTE 410 282 05 40 55 NUGGET 411 247 26 53 08 POLISH SETTLEMENT 413 247 11 53 53 ELK ISLE 414 247 09 53 31 HALIFAX 415 296 23 44 39 VALSAYN 416 298 36 10 38 SEBRING 417 278 40 27 20 WORCESTER 418 285 16 42 35 640 WEAVERS NEEDLE 419 248 34 33 24 PHILADELPHIA 420 284 51 39 56 CLARION PA 421 280 37 42 12 460 MIQUELON 422 247 05 53 14 WINNIPEG 423 262 36 49 54 232 ALPINE 424 243 22 32 50 885 CABRERA 425 249 03 31 19 1220 U.P.N. 426 249 02 31 20 1240 LAIE 427 202 04 21 39 PUNTA ARENAS 428 275 06 9 54 FT. DAVIS 429 256 03 30 36 LA SALLE STATE PARK 430 272 32 41 04 HERB'S FIELD 431 237 44 37 17 167 BELO HORIZONTE 501 315 10 -20 43 997 PORTO ALEGRE 1 502 308 50 -29 55 4 PORTO ALEGRE 2 503 308 48 -30 03 4 PORTO ALEGRE 3 504 308 30 -30 14 200 LA PAZ 2 506 291 55 -16 32 3360 LA PAZ 1 507 291 52 -16 31 3580 BRAZILIA 508 312 20 -15 55 1100 ARAMBARE 509 308 30 -30 55 PORTO ALEGRE 4 510 308 33 -30 55 PORTO ALEGRE 5 511 309 00 -30 23 4 PORTO ALEGRE 6 512 308 51 -30 04 IRAI 513 306 37 -27 21 522 PORTO ALEGRE 7 514 308 49 -30 05 295 PORTO ALEGRE 8 515 309 06 -29 51 30 PORTO ALEGRE 9 516 309 17 -30 12 15 FORTALEZA 517 321 00 -3 34 SANTA ANA, TARIJA 518 295 29 -21 37 1900 VILLA ELISA 519 301 57 -34 50 20 ABAGAZA, ZARATE 520 300 58 -34 07 26 PORTO ALEGRE 10 521 309 52 -29 48 PORTO ALEGRE 11 522 350 50 -30 03 6 PORTO ALEGRE 12 523 308 49 -30 05 SAO PAOLO 524 313 17 -23 32 780 _____________________________________________________________ The following two tables present the individual visual observers who participated in the Meteor Studies Network activities. They are listed in Table C-III alphabeticallyi, in Table C-IV by their identification numbers. Table C-III. Visual Observers Listed Alphabetically _______________________ Observer No. _______________________ ABELA S. 222 ADIB C.A. 158 ALCARAZ D. 229 ALDRICH P.T. 001 ALMEIDA L.D. 159 ANDERSON C. 003 ANDRESEN B. 002 ANTHONY D. 004 AOTA T. 185 AQUILINA J. 220 ARAUJO P. 265 ARCE M. 233 ARCE V. 234 ARLT R. 005 AZEVEDO C. 157 AZOFEIFA D.E. 246 BABNIC S. 208 BALDACCHINO G. 091 BALDAUF P. 094 BALL J. 198 BARATA P. 274 BARKAT S. 006 BARROW R. 148 BEAZLEY I. 250 BERKO E. 132 BOSCHAT M.E. 147 BROWN P. 261 BURROWS J. 199 BUSSON A. 110 CAKE D. 007 CARLOS F. 117 CLARK M. 239 CLAY M. 008 COCKERAM L. 009 COCKERAM M. 010 COMOS G. 210 COOK A. 145 CORONEOS M. 228 COWIE F. 196 CSABAI I. 127 CZESCIK C. 011 DALAVIA O.D. 152 DARVANN T. 012 DA SILVA L.A. 153 DE ABREU E.R. 070 DE ARAUJO L. 268 DECONINCK M. 013 DIETEL F. 014 DOCKING G. 200 DOHRMANN M. 192 DOMENY G. 130 DOUGHTY S. 015 DURHAM D. 016 DYMOVA G. 213 ESPINOZA E. 112 EVANS S. 017 FARKAS E. 082 FERDINANDO D. 018 FETTIG S. 144 FITZGERALD P. 019 FODOR A. 086 FOLDESI F. 089 FOLEY C. 240 FORTUNATO H. 272 FROTA L.M. 116 FUJITA Y. 179 FUNANO K. 190 GHISOLFI E.S. 201 GILROY J. 021 GOLDSMITH J. 022 GOODKNECHT R. 140 GOODMAN D. 023 GRAY M. 024 GUHL K. 193 GYARMATI L. 084 HAAGH N. 029 HALMI G. 133 HARADA S. 181 HARNISCH T. 030 HARVEY N. 224 HASHIMOTO T. 248 HAYS R. 114 HILLESTAD T.E. 031 HINTON C. 275 HINZ W. 032 HIRAGA E. 189 HIROE T. 176 HOLLOSY T. 128 HOTAKAINEN,M 076 INOUE M. 187 INOUE S. 186 INWOOD N. 034 ITO O. 168 JAASKELAINEN P. 071 JENKINSON C. 033 KAALZ A. 095 KADLCIK M. 194 KAWASAKI Y. 177 KEIICHI F. 171 KERR S. 025 KESZTHELYI S. 134 KITAHATA K. 184 KNOEFEL A. 108 KOCH B. 026 KOSCHACK R. 027 KRAWIETZ A. 098 KRISTENSEN G.M. 028 KUROKAWA T. 173 LAM H. 035 LEPORI B. 216 LEVAI R. 069 LINKE P. 202 LOCKHART J.A. 149 LOHVINENKO T.W. 195 LOWE D. 036 LUNSFORD R. 146 MACAULEY B. 037 MACHADO L.A. 245 MAKELA V. 075 MALONE J. 238 MARAZITI A. 218 MARTIKAINEN M. 079 MARUYAMA T. 172 MATSUOKA K. 183 MCATEE W. 241 MCKINLAY G. 038 MCLOUGHLAN R. 242 MCMULLEN M. 039 MELANDRI F. 040 MELGAREJO M. 120 MEOLI F. 215 MERING G. 203 MITCHELL K. 258 MONTEON R. 230 MOORE R. 141 MORAIS D. 244 MORENO G. 270 MORITZ S. 097 MORROW M.J. 041 MUDGE R. 255 MULLER K. 042 MUNOZ S. 107 MUROTA M. 180 MUSCAT T. 221 NATOLI C. 043 NEGISHI M. 175 NELSON J. 257 NERY M.D. 154 NETO V.F. 151 NOLLE M. 044 NOSAL I. 211 NOUSIAINEN M. 080 NUNES H. 271 OCENAS D. 204 OCHIAI T. 174 OKA Y. 188 OLESEN J.O. 045 OLSSEN S. 264 OTTO F. 096 PAGE B. 263 PARADOWSKI M. 115 PARKER J. 047 PATAK A. 135 PAYNE J. 262 PEDERSEN V.T. 121 POSZTOBANY K. 087 PRICE R. 243 QUAN H. 048 RADANOVIC V. 259 RAJALA R. 073 RAMBERG P. 074 RANNERIES 122 RAPAVY P. 205 RAPHAEL W. 235 RASMUSSEN A. 123 RAVISCH I. 106 RAWLINGS P. 049 RENDTEL I. 050 RENDTEL J. 051 RENNER G.K. 155 RIDDLE D. 052 RITZL F. 126 ROBLER S. 273 ROCHA E. 267 RODRIGUEZ G. 231 ROLDAN R. 232 RUDD I. 251 RUTLEY J. 260 SAARENPURO M. 072 SAJTZ A. 137 SAKATA Y. 191 SALAS J. 138 SALM H.R. 053 SANCHEZ A. 236 SANTANA E. 266 SASSI A. 217 SCHEMBRI A. 092 SCHREYER T. 103 SCHROETER T. 104 SCHUTT S. 254 SCLOVSKY L. 156 SEARS K. 142 SEARS P. 143 SEIFERT H. 102 SEIPELT H. 109 SENTDORDIOVA I. 214 SHANKLIN J. 124 SHAVER J. 150 SHEPHERD A. 054 SHIBU Y. 118 SIMPSON D. 253 SINGH B. 119 SKJAERAASEN O. 055 SOMMER C. 269 SPANYI P. 085 STACEY P. 056 STEPHAN C. 057 SULE G. 083 SULLIVAN S. 058 SWANN D. 059 SWAVELY M. 160 SZABO J. 212 SZABO S. 125 TABORI S. 136 TACHIHARA Y. 182 TAIBI R.J. 060 TAKACS R. 209 TAME J. 061 TARNAY K. 129 TEPEL S. 105 TEPLICZKY I. 081 TIZZARD K. 249 TOMIHIRO H. 170 TOTH J. 131 TREASSURE M. 197 TRINH N. 227 UEDA K. 247 UEDA M. 169 VALDENASSI E. 062 VALJUS P. 077 VELLA I. 093 VENTURA F. 090 VILLA R. 237 WAKE S. 166 WATERS B. 139 WHITNEY A. 063 WHITNEY J. 064 WIBLIN B. 065 WIRTANEN P. 078 WITZSCHEL H. 101 WITZSCHEL S. 099 WOOD J. 066 YABU Y. 167 YAKIWARA H. 178 YAMAGUCHI W. 111 ZALCIK M. 067 ZALLES R. 113 ZIMNIKOVAL P. 207 ZNASIK M. 206 ZSCHOCHE M. 100 ZUTHER O. 068 _______________________ Table C-IV: Visual Observers Listed by Identification Number _______________________ Observer No. _______________________ ALDRICH P.T. 001 ANDRESEN B. 002 ANDERSON C. 003 ANTHONY D. 004 ARLT R. 005 BARKAT S. 006 CAKE D. 007 CLAY M. 008 COCKERAM L. 009 COCKERAM M. 010 CZESCIK C. 011 DARVANN T. 012 DECONINCK M. 013 DIETEL F. 014 DOUGHTY S. 015 DURHAM D. 016 EVANS S. 017 FERDINANDO D. 018 FITZGERALD P. 019 GILROY J. 021 GOLDSMITH J. 022 GOODMAN D. 023 GRAY M. 024 KERR S. 025 KOCH B. 026 KOSCHACK R. 027 KRISTENSEN G.M. 028 HAAGH N. 029 HARNISCH T. 030 HILLESTAD T.E. 031 HINZ W. 032 JENKINSON C. 033 INWOOD N. 034 LAM H. 035 LOWE D. 036 MACAULEY B. 037 MCKINLAY G. 038 MCMULLEN M. 039 MELANDRI F. 040 MORROW M.J. 041 MULLER K. 042 NATOLI C. 043 NOLLE M. 044 OLESEN J.O. 045 PARKER J. 047 QUAN H. 048 RAWLINGS P. 049 RENDTEL I. 050 RENDTEL J. 051 RIDDLE D. 052 SALM H.R. 053 SHEPHERD A. 054 SKJAERAASEN O. 055 STACEY P. 056 STEPHAN C. 057 SULLIVAN S. 058 SWANN D. 059 TAIBI R.J. 060 TAME J. 061 VALDENASSI E. 062 WHITNEY A. 063 WHITNEY J. 064 WIBLIN B. 065 WOOD J. 066 ZALCIK M. 067 ZUTHER O. 068 LEVAI R. 069 DE ABREU E.R. 070 JAASKELAINEN P. 071 SAARENPURO M. 072 RAJALA R. 073 RAMBERG P. 074 MAKELA V. 075 HOTAKAINEN,M 076 VALJUS P. 077 WIRTANEN P. 078 MARTIKAINEN M. 079 NOUSIAINEN M. 080 TEPLICZKY I. 081 FARKAS E. 082 SULE G. 083 GYARMATI L. 084 SPANYI P. 085 FODOR A. 086 POSZTOBANY K. 087 FOLDESI F. 089 VENTURA F. 090 BALDACCHINO G. 091 SCHEMBRI A. 092 VELLA I. 093 BALDAUF P. 094 KAALZ A. 095 OTTO F. 096 MORITZ S. 097 KRAWIETZ A. 098 WITZSCHEL S. 099 ZSCHOCHE M. 100 WITZSCHEL H. 101 SEIFERT H. 102 SCHREYER T. 103 SCHROETER T. 104 TEPEL S. 105 RAVISCH I. 106 MUNOZ S. 107 KNOEFEL A. 108 SEIPELT H. 109 BUSSON A. 110 YAMAGUCHI W. 111 ESPINOZA E. 112 ZALLES R. 113 HAYS R. 114 PARADOWSKI M. 115 FROTA L.M. 116 CARLOS F. 117 SHIBU Y. 118 SINGH B. 119 MELGAREJO M. 120 PEDERSEN V.T. 121 RANNERIES 122 RASMUSSEN A. 123 SHANKLIN J. 124 SZABO S. 125 RITZL F. 126 CSABAI I. 127 HOLLOSY T. 128 TARNAY K. 129 DOMENY G. 130 TOTH J. 131 BERKO E. 132 HALMI G. 133 KESZTHELYI S. 134 PATAK A. 135 TABORI S. 136 SAJTZ A. 137 SALAS J. 138 WATERS B. 139 GOODKNECHT R. 140 MOORE R. 141 SEARS K. 142 SEARS P. 143 FETTIG S. 144 COOK A. 145 LUNSFORD R. 146 BOSCHAT M.E. 147 BARROW R. 148 LOCKHART J.A. 149 SHAVER J. 150 NETO V.F. 151 DALAVIA O.D. 152 DA SILVA L.A. 153 NERY M.D. 154 RENNER G.K. 155 SCLOVSKY L. 156 AZEVEDO C. 157 ADIB C.A. 158 ALMEIDA L.D. 159 SWAVELY M. 160 WAKE S. 166 YABU Y. 167 ITO O. 168 UEDA M. 169 TOMIHIRO H. 170 KEIICHI F. 171 MARUYAMA T. 172 KUROKAWA T. 173 OCHIAI T. 174 NEGISHI M. 175 HIROE T. 176 KAWASAKI Y. 177 YAKIWARA H. 178 FUJITA Y. 179 MUROTA M. 180 HARADA S. 181 TACHIHARA Y. 182 MATSUOKA K. 183 KITAHATA K. 184 AOTA T. 185 INOUE S. 186 INOUE M. 187 OKA Y. 188 HIRAGA E. 189 FUNANO K. 190 SAKATA Y. 191 DOHRMANN M. 192 GUHL K. 193 KADLCIK M. 194 LOHVINENKO T.W. 195 COWIE F. 196 TREASSURE M. 197 BALL J. 198 BURROWS J. 199 DOCKING G. 200 GHISOLFI E.S. 201 LINKE P. 202 MERING G. 203 OCENAS D. 204 RAPAVY P. 205 ZNASIK M. 206 ZIMNIKOVAL P. 207 BABNIC S. 208 TAKACS R. 209 COMOS G. 210 NOSAL I. 211 SZABO J. 212 DYMOVA G. 213 SENTDORDIOVA I. 214 MEOLI F. 215 LEPORI B. 216 SASSI A. 217 MARAZITI A. 218 AQUILINA J. 220 MUSCAT T. 221 ABELA S. 222 HARVEY N. 224 TRINH N. 227 CORONEOS M. 228 ALCARAZ D. 229 MONTEON R. 230 RODRIGUEZ G. 231 ROLDAN R. 232 ARCE M. 233 ARCE V. 234 RAPHAEL W. 235 SANCHEZ A. 236 VILLA R. 237 MALONE J. 238 CLARK M. 239 FOLEY C. 240 MCATEE W. 241 MCLOUGHLAN R. 242 PRICE R. 243 MORAIS D. 244 MACHADO L.A. 245 AZOFEIFA D.E. 246 UEDA K. 247 HASHIMOTO T. 248 TIZZARD K. 249 BEAZLEY I. 250 RUDD I. 251 SIMPSON D. 253 SCHUTT S. 254 MUDGE R. 255 NELSON J. 257 MITCHELL K. 258 RADANOVIC V. 259 RUTLEY J. 260 BROWN P. 261 PAYNE J. 262 PAGE B. 263 OLSSEN S. 264 ARAUJO P. 265 SANTANA E. 266 ROCHA E. 267 DE ARAUJO L. 268 SOMMER C. 269 MORENO G. 270 NUNES H. 271 FORTUNATO H. 272 ROBLER S. 273 BARATA P. 274 HINTON C. 275 _______________________ ATTACHMENT D: OBSERVATIONS This attachment lists the results of the radar observations in Table D-I and of the visual observations in Table D-II. Table D-I. Radar observations ______________________________________________________________ Object Source Number File of hours number ______________________________________________________________ Eta Aquarids 1984 Hajduk, Bratislava 70 900201 Hajduk, Bratislava 14 900202 Lindblad, Lund 60 900203 Babadzhanov, Dushanbe 192 900204 Babadzhanov, Dushanbe 189 900205 Orionids 1984 Hajduk, Bratislava 68 900206 Hajduk, Bratislava 11 900207 Cevolani, Budrio 205 900208 Lindblad, Lund 45 900209 Babadzhanov, Dushanbe 224 900210 Babadzhanov, Dushanbe 225 900211 Eta Aquarids 1985 McIntosh, Ottawa 165 900212 Lindblad, Lund 59 900213 Cevolani, Budrio 42 900214 Hajduk, Bratislava 83 900215 Hajduk, Bratislava 38 900216 Babadzhanov, Dushanbe 267 900217 Babadzhanov, Dushanbe 265 900218 Orionids 1985 McIntosh, Ottawa 216 900219 Lindblad, Lund 54 900220 Hajduk, Bratislava 36 900221 Hajduk, Bratislava 25 900222 Poole, Grahamstown 8 900223 Babadzhanov, Dushanbe 269 900224 Babadzhanov, Dushanbe 269 900225 Eta Aquarids 1986 McIntosh, Ottawa 168 900226 (comet plane McIntosh, Ottawa 10 900227 crossing) Cevolani, Budrio 63 900228 Lindblad, Lund 54 900229 Poole, Grahamstown 18 900230 Hajduk, Bratislava 37 900231 Hajduk, Bratislava 28 900232 Babadzhanov, Dushanbe 269 900233 Babadzhanov, Dushanbe 270 900234 Orionids 1986 McIntosh, Ottawa 193 900235 (comet plane McIntosh, Ottawa 10 900236 crossing) Hajduk, Bratislava 23 900237 Hajduk, Bratislava 12 900238 Poole, Grahamstown 20 900239 Cevolani, Budrio 131 900240 Babadzhanov, Dushanbe 258 900241 Babadzhanov, Dushanbe 258 900242 Eta Aquarids 1987 Poole, Grahamstown 19 900243 Babadzhanov, Dushanbe 225 900244 Babadzhanov, Dushanbe 195 900245 Orionids 1987 Poole, Grahamstown 20 900246 Babadzhanov, Dushanbe 222 900247 Babadzhanov, Dushanbe 239 900248 Eta Aquarids 1988 Poole, Grahamstown 17 900249 Orionids 1988 Poole, Grahamstown 20 900250 ______________________________________________________________ Total 5878 50 ______________________________________________________________ Table D-II. Visual Observations ____________________________________________________________ Eta Aquarids Orionids ____________________ ____________________ File number Year Number Year Number of hours of hours ____________________________________________________________ 1982 59 900251 1984 134 900252 1984 368 900253 1985 134 900254 1985 546 900255 1986 218 900256 1986 33 900257 1987 93 900258 1987 39 900259 ____________________________________________________________ Totals 579 1045 9 Grand Total 1624 ____________________________________________________________