Index of /holdings/ro-x-gia-2-mars-marsswingby-v1.0

Icon  Name                    Last modified      Size  Description
[DIR] Parent Directory - [DIR] calib/ 12-May-2011 10:05 - [DIR] catalog/ 12-May-2011 10:05 - [DIR] data/ 12-May-2011 10:05 - [DIR] document/ 12-May-2011 10:05 - [DIR] DOWNLOAD/ 08-Jun-2011 12:18 - [DIR] extras/ 12-May-2011 10:05 - [DIR] index/ 08-Jun-2011 12:18 - [TXT] aareadme.txt 11-Mar-2011 10:23 10K [TXT] dataset.html 14-Feb-2012 09:59 3.5K [   ] 11-Mar-2011 10:23 4.3K [PDS catalog file]

OBJECT              = TEXT
  NOTE              = "Rosetta GIADA data during Mars swing-by phase"
  PUBLICATION_DATE  = 2011-03-08
END_OBJECT          = TEXT


             Rosetta GIADA data during Mars swing-by phase

1. Introduction

This volume contains Experiment Data acquired by GIADA during 
'Mars swing-by' phase. More in detail it refers to the data provided during 
the following in-flight tests:
'Active Payload Checkout n. 4' (PC4) held on 24/25-11-2006 and 04-12-2006;
'Passive Payload Checkout n. 5' (PC5) held on 20/21-05-2007.
It also contains documentation which describes the GIADA experiment.

The 'Active Payload Checkout n. 4' (PC4) test is the first in a number of 
active Payload checkouts performed during Rosetta cruise to be carried out 
before any major activity during the Rosetta Cruise phase. GIADA PC4 consists 
of 2 phases. The first phase is a passive test (GD01) similar to the previous 
Passive Payload Checkouts n. 0-3; it was executed on 24-25 November 2006 by 
switching on Main and Redundant I/Fs in sequence and executing similar 
procedures for the two cases. The second phase is an active test (GD02 and 
GD03) performing and checking new telecommands. The active test was executed 
on 04 December 2006 but only the timeline GD02 was performed. In fact a NOGO 
was issued by GIADA Team for the GD03 due to the partial failure of GD02.
The 'Passive Payload Checkout n. 5' (PC5) test is one of routine checkouts 
performed during Rosetta cruise. GIADA PC5 was executed on 20-21 May 2007 
by switching on Main and Redundant I/Fs in sequence and executing similar 
procedures for the two cases.
For both the tests a sequence of threshold and gain setting changes was 
applied in order to test the sensitivity of different sensors. MBS heating 
was also performed.

We recall that some new FCPs were agreed and consolidated with ESA in the 
2005-2006 period, for a proper rationalisation of GIADA in-flight commanding. 
Some of them replace those used in previous in-flight tests, although the 
content of the test is similar. Starting with PC2, some of these new FCPs 
were used, together with other FCPs already validated in the previous GIADA 
Commissioning phases.

Data reported in the present volume are at CODMAC level = 2; therefore they 
are essentially in the form of physical quantities with units, when 
appropriate (e.g., voltages in Volts, temperature in Celsius deg), but not 
converted to yield data in scientific units (CODMAC level = 3).

The data set organisation conforms to the Planetary Data System (PDS) 
Standards, Version 3.0, Jet Propulsion Laboratory (JPL) document JPL D-7669, 
according to the structure agreed with ESA and described in 
RO_GIA_OACUPA_IF_011_I3 (reported in DOCUMENTation dir).

A general description of GIADA instrument is in RO_GIA_OACUPA_IF_011_I3.
See also RO_GIA_OACUPA_RP_099_1 and RO_GIA_OACUPA_RP_104_1 
(reported in DOCUMENTation dir) for evaluations on GIADA behaviour during 
this mission phase.

2. File Formats

See Sections 3 and 4 of RO_GIA_OACUPA_IF_011_I3 (reported in DOCUMENTation 

3. Data Set Contents

The files on this volume are organized in a directory tree as described in 
RO_GIA_OACUPA_IF_011_I3 (reported in DOCUMENTation dir).

We recall here that GIADA is formed by 3 detection devices: GDS (Grain 
Detection System), IS (Impact Sensor) and MBS (Micro Balance Sensors), 
guided and controlled by ME (Main Electronics).

We recall that GIADA may operate in four different operative modes. These 
modes can be selected autonomously by the S/C control system, as well as by 
means of ground TCs. Different operational modes correspond to different 
active subsystems, so allowing to measure different quantities, as it follows:

Mode Name       Active subsystems (nominal)     Measured quantities
SAFE            ME                              None
NORMAL          ME, GDS, IS, 5 MBSs             Dust flux and fluence
                                                Grain Scattering properties
                                                Momentum of single grains
                                                Velocity of grains
                                                Mass of single grains
FLUX            ME, 5 MBSs                      Dust flux and fluence
COVER           ME, Cover or Frangibolt         None

In each Mode different sensors may also be switched ON/OFF separately by 
proper TC. While scientific data are acquired in NORMAL or FLUX Modes only, 
Housekeeping data are acquired in all Modes.

We recall that GIADA is a "dust event driven" experiment, so that no 
scientific data are collected until arrival to the comet. Therefore, during 
Rosetta Cruise Phase no scientific event is recorded. Actually, some 
"scientific events" are recorded by GDS and IS, but they are not real dust 
events and must be neglected.
In-flight calibration and housekeeping data are collected and reported in 
the data set. They are relevant to follow the behaviour and health status of 
the GIADA experiment and must be used in comparison with data obtained during 
on ground and other in-flight tests (see other relevant data sets).

Under the DATA sub-directory, different sub-sub-directories are present of 
four main classes.

First class: directories containing actual scientific data related to dust 
monitoring. They are labelled with the acronym of the GIADA sub-system. 
GDS+IS, GDS and IS directories contain "scientific data" related to "single 
grain detections" by: GDS_IS (when a grain is detected by GDS and IS in 
sequence: this is the "nominal" detection of a grain by GIADA); GDS (when a 
grain is detected by GDS, but the grain momentum is too small to activate the 
detection by the IS or it does not reach at all the IS); IS (when a grain is 
detected by the IS, but it was not able, e.g. too small, to activate the 
optical detection by GDS). If no grain is detected by the relevant sub-system
the corresponding directory is not present in the data set.
MBS directory contains the periodic reading of each of the five microbalances.

Second class: directories containing data acquired for periodic calibration 
of sub-systems. They are labelled with the acronym of the GIADA sub-system 
followed by _CAL. 

Third class: directories containing housekeeping (HK) and instrument status 
data for instrument health control and verification of behaviour in function 
of issued commanding sequences.
HK_DATA contains HK data acquired periodically, independently on scientific 
operation of GIADA. These data guarantee a control of GIADA. It also contains 
a record of GIADA status in terms of operative parameters that are set at the 
switch on and can be modified by Telecommand during operation.
HK_SCI contains HK data recorded contextually to acquisition of "scientific 
events". These data are useful, for example, to check behaviour of scientific 
signals with operative conditions (e.g. temperature) and instrument status 
(e.g.: laser illumination) at the time of event detection.

Fourth class:
MBS_HEAT contains data acquired when MBS's are heated (this operation is 
not automatic and is triggered by a suitable Telecommand). This procedure can 
be activated to try to remove deposited (mainly volatile) material from the 
sensors in case they should become saturated. Practically, the run of this 
process is also useful to analyse (periodically) the behaviour of the 
frequency vs. temperature for each MBS.

Under each sub-sub-directory just described, the data are organised in 
a further lower level according to the date of acquisition and to the kind 
of test performed on GIADA.

Data reported in CALIB sub-dir are of two classes:
ENG_CAL: contains data (for Main and Red Interface) for polynomial laws to 
convert digital numbers (ADC counts) into engineering data with units. Both 
these data formats are reported in the different data files.
SCI_CAL: contains data for transformation of engineering data into 
scientifically relevant data. These data are not present in the volume.

Further details about the data content are reported in the *INFO.TXT files 
present in each sub-dir.

4.Data Quality

At each GIADA switch ON, a careful data analysis is performed to validate 
data quality with respect to previous on-ground and in-flight switch-on. This 
check is based on comparison of GIADA housekeeping data and analysis of 
operation conditions.
The quality of GIADA data is identified based on this analysis. The approach 
is different for data sets at CODMAC 2 or 3 levels and for housekeeping or 
scientific data.
For data at CODMAC 2 level, the data quality convention is as shown below:
ID => DESC => Comment
1  => GOOD => All HK and SCI data in the TAB file are good
2  => SPURIOUS EVENTS PRESENT => When only some spurious data are present in 
      the TAB
3  => BAD => A large amount of spurious data is present in the TAB
N/A=> N/A => The file contains reference information/data which are not HK or 
      SCI data

5.Errata and Disclaimer

A cumulative list of anomalies and errors is maintained in the file ERRATA.TXT
at the root directory of this volume, if needed.
Although considerable care has gone into making this volume, errors are both 
possible and likely. Users of the data are advised to exercise the same 
caution as they would when dealing with any other unknown data set.
Reports of errors or difficulties would be appreciated. Please contact one of 
the persons listed herein.

5. Whom to Contact for Information

For questions concerning this data volume, data products, documentation and 
GIADA in general:

Luigi Colangeli
INAF - Osservatorio Astronomico di Capodimonte
Via Moiariello n. 16
80131 Napoli (Italy)
Electronic mail address:,

Pasquale Palumbo
Universita' "Parthenope"
Via A. De Gasperi n. 5
80133 Napoli (Italy)
Electronic mail address:,